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PREFACE

This summary report covers the development of the spacecraft
system for the SERT program, which was carried out by the Astro-
Electronics Division of RCA for the Lewis Research Center of the
National Aeronautics and Space Administration under Contract
NAS 8-2449. The report contains seven sections which describe
the complete SERT system including the mechanical and electrical
design of the spacecraft, the dynamics of the spin-stabilized
spacecraft in flight, the ground support equipment, the testing
program, and the reliability analyses performed during the
program. Pertinent, detailed analyses and data are presented

in appendixes at the end of the report.
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SUMMARY REPORT
on the
DEVELOPMENT OF THE SERT | SPACECRAFT

SUMMARY

This final report describes the development of the spacecraft system for the SERT
program. The program was carried out by the Astro-Electronics Division (AED)

of RCA for the Lewis Research Center (LeRC) of the National Aeronautics and Space
Administration under Contract No. NAS 8-2449. Specifically, RCA designed and built
three prototype and two flight models of the SERT spacecraft, designed portions of
the ground checkout and flight monitoring equipment, and provided assistance in
testing and prelaunch checkout of the spacecraft. This report concerns work performed
from the initiation of the contract in July, 1961, to the flight on July 20. 1964,
Since the details of the flight and the analysis which followed are beyond the
scope of this document, this information is not given herein. For such information,
the reader should consult NASA report No. TN D-2718.

SECTION |
INTRODUCTION

A. GENERAL

Ion-propulsion development, up to the initiation of the SERT program, had been
exclusively concerned with analytical studies and laboratory testing of research en-
gines. The success achieved in these areas led to a desire to operate these devices
in the space environment in order to evaluate phenomena not readily amenable to ground
testing and to determine the existence of unknown phenomena directly connected with
the space environment. NASA, therefore, initiated the SERT program, with the aim
of conducting a short-term space test of ion propulsion engines.

Two ion-engine systems representative of approaches under study were to be flown:
a mercury-bombardment ion engine, developed by the NASA Lewis Research Center
and a cesium-contact ion engine, developed by the Hughes Research Laboratory under
contract to the Lewis Research Center. The engines to be flown would be research
designs modified for the purposes of the test.




The major objective of the test was to study the behavior of ion-beam neutralization,
without which, in general opinion, thrust is unobtainable. It was felt that limitations
in vacuum-chamber testing, e.g., wall effects and incomplete vacuum, may have
affected the successful neutralization achieved to date.

B. THE SERT | MISSION

The mission specified for the SERT Ispacecraft (Figure I-1) was to test the mercury-
bombardment and cesium-contact ion engines in a space flight. As conceived, the
spacecraft would carry the two ion engines, each with its own power-conversion equipment,
in addition to the power, communications, control, and sensory equipment necessary to in-
flight operation of the engines and transmission of flight data. A one-hour flight with
a ballistic trajectory was considered sufficient to sequentially operate the two engines
and obtain the desired test data, For this flight, a standard 4-stage Scout, utilizing
an ABL X258 fourth stage, was selected as an economical, available launch vehicle
having the necessary performance characteristics,

The NASA Scout launch facility at Wallops Island, Virginia, was designated as the
launch site, and the flight was to end with re-entry into the atmosphere over the
Atlantic Ocean, The TIROS communication facility at Wallops Island was to be
utilized for the command and telemetry functions, with the down-range station at
Bermuda furnishing additional tracking and data-retrieval support.

C. THE SERT | SYSTEM
1. System Requirements

The SERT I system was designed to meet the specific requirements of the flight-
test mission, For the spacecraft, the principal design and interface requirements,
established at the outset of the program, are as follows:

® The spacecraft must provide a method for measuring ion-engine thrust
during flight;

e It must contain and support the two ion engines for satisfactory in-flight
operation;

& It must contain the power sources and power conversion equipment
necessary to the in-flight operation of the ion engines;

e It must have the capability for complete self-programmed and remote
control of in-flight system operation;

® It must provide the means for obtaining in-flight performance data;

® Provision must be made for the integration of Government-Furnished
Equipments (GFE) into the spacecraft system (See Table I-1);
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TABLE I-1. GOVERNMENT-FURNISHED EQUIPMENT (GFE) ON THE
SERT I SPACECRAFT

Mercury-Bombardment-Engine DC Power Supply
Mercury—Bombardment—Engine AC Power Supply
Cesium—Contact—Engine Inverter

Cesium-Contact-Engine AC Power Supply

Cesium-Contact-Engine DC Power Supply

Cesium-Contact-Engine Control Box

Mercury—Bombardment-Engine Neutralizer Power Supply and Transducer
Main Batteries (2)

Telemetry Battery

Programmer

Mercury-Bombardment—Engine Magnetic-Field Supply and Transducer
Commutators (2) '

Radial Accelerometer

Flyaway Mounting Block

Cesium-Contact Ion Engine

Mercury-Bombardment Ion Engine

The general design and interface requ
to support the spacecraft system, are as follows:

It must be designed to fit within the lannch_vehicle heat chiald and to matns
with, and separate from, the final stage;

Its weight must not exceed the limits set by launch-vehicle stress and
mission time-of-flight requirements;

It must provide a satisfactory thermal environment for the components
during mission lifetime and ground testing;

The spacecraft and its components must be designed to withstand the launch

and flight mechanical environment as well as handling loads to which it
would be subjected; and

The spacecraft system, subsystems, and components must be designed to
provide a high degree of assurance of mission success.

On-site checkout of the flight spacecraft;
Go/No-Go checkout of the spacecraft during launch operations; and

In-flight monitoring and control of Spacecraft operation.

irements of the SERT ground equipment, designed




2. System Description

a. Spacecraft Configuration

The SERT spacecraft configuration was dictated primarily by mission re-
quirements. Launch vehicle considerations further dictated the maximum physical
configuration of the spacecraft.

To achieve the major objective of the test, i.e., proof of ion-beam neutralization, a
measure of the thrust produced was mandatory. A thrust of 0.006 pound, as was
expected from the mercury-bombardment engine, would produce a linear acceleration of
1.7 x 10~5g on a 350-pound spacecraft. Because of the difficulties associated with the
measurement of so small a linear acceleration, it was decided to apply thrust so that
the angular momentum of the spacecraft, rather than the linear momentum, would be
varied. Accordingly, a spin-stabilized spacecraft, with the ion engine mounted to
apply torque about the spin axis, was selected. With this arrangement, thrust can

be measured through detection of the rate of change of spacecraft spin rate. A very
significant feature of this technique is the time integration of thrust by the spinning
spacecraft. Because the spin-rate data was critical to the mission, redundant. methods
of measurement (sun sensors, radial accelerometers, and rf signal-strength variations)
were employed.

The overall spacecraft, 30 inches in diameter and 28 inches in height, was designed to
fit within the 34-inch heat shield of the Scout launch vehicle with internal clearances of
at least 1 inch to allow for movement under dynamic stresses (see Figure I-2).

The spin-stabilized spacecraft selected utilized a circular, ribbed baseplate, which
provided (1) symmetry about the spin axis, (2) availability of top and bottom surfaces
for component mounting, and (3) structural efficiency proven in other spacecraft. The
baseplate was mounted atop a hollow column to provide clearance between the Scout
fourth stage and the components mounted under the baseplate.

For stability about the spin axis, the moment of inertia about that axis had to be larger
than that about any other axis. To achieve this, the heavier components were mounted
toward the outside of the baseplate. This mounting arrangement was also favorable with
regard to thermal design because radiation from the larger components (having the
greatest internal energy dissipation) was unobstructed. Although total weight (375
pounds) was a secondary consideration in this non-orbital spacecraft, it did affect the
system configuration; the subsystem weights are given in Table I-2.

The ion engines were mounted on arms, hinged at the outer edge of the baseplate, which
permitted them to be stowed below the baseplate during launch. After separation from
the fourth stage, the engines would extend to positions well beyond the heat shield limi-
tation. The extension was required (1) to minimize interference between the ion-engine
exhaust and the spacecraft; (2) to reduce thermal coupling from the hot engines to the
spacecraft; and (3) to increase the torquing moment arm of the engines. Figure I-3
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Figure I-2. SERT Spacecraft Inside the Scout Heat Shield
TABLE I-2. SERT I SUBSYSTEM WEIGHT BREAKDOWN
Mercury-bombardment-engine subsystem 94.91
Cesium -contact-engine subsystem 53.90
Telecommunications subsystem 33.72
Command and control subsystem 18.04
Power subsystem 73.75
Sensory subsystem 9.66
Structure (including distributor frame, ground
plane, and detuning wings) 26.90
Miscellaneous mounting brackets (including
engine extension subsystem) 21.98
Harness and squibs 17.57
Precession dampers 2.48
Balance weights 8.34
Potting, tacking, and miscellaneous parts 13.75
Total spacecraft weight 375.00
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TELECOMMUNICATIONS

DISTRIBUTOR FRAME

CESIUM-CONTACT
ION ENGINE

CONTACT-ENGINE
POWER CONVERTERS

MERCURY-BOMBARDMENT
ION ENGINE

BATTERIES

BASEPLATE

BOMBARDMENT-ENGINE
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COMMAND SUBSYSTEM
(WITHIN COLUMN)

COLUMN

\ ANTENNAS

Figure I-3. Location of Major Subsystems and Components
in the SERT I Spacecraft

shows the SERT I spacecraft with the engines in the extended position; also shown in
the figure are some of the major component locations.

The electrical system was also developed in direct response to mission requirements.
A major consideration, in view of cost and development time factors, was the use of
off-the-shelf hardware wherever possible. The requirement for high power (up to
1.5 kw) for less than one hour gave rise to the selection of "one-shot,' silver-zinc
batteries (GFE) as the prime spacecraft power source. The use of solar power was
discounted immediately because of the power-weight-time tradeoff, and rechargeable
batteries such as nickel-cadmium or silver-cadmium were rejected because of their
less favorable energy-to-weight ratio. The long-term multiple-use advantage of re-
chargeable batteries was also rejected in favor of the use of external power supplies
for most test purposes. The requirement for dc-dc power converters to provide the
high voltages necessary for ion-engine operation evolved as a result of the battery
selection. Direct approaches of obtaining high voltages (e.g., from a battery array)

were rejected because of the many developmental problems and the unfavorable
weight trade-off.

Selection of a simple pam-fm-fm telemetry system rather than one using a more
sophisticated and efficient approach (e.g., digital transmission) was based on the




minimum development cost and time required (most of the hardware could be ob-
tained off-the-shelf) and on the adaptability with the ground station at the Wallops
Island launch site. An on-board preset programmer for primary mission control
was selected because of its simplicity and reliability compared with variable pro-
gramming or complete control via ground command. In addition, the possibility of
ion-engine-induced noise jamming a ground command system was a major consider-
ation in favor of the preset programmer. A relatively simple command system
with excellent noise-rejection characteristics was added to provide back-up ground
control for the mission. It provided primarily for emergency shut—off of either of
the two engine subsystems and activation of the other, and could also be used to
direct mission operations in the event of programmer failure.

The engine subsystem power-switching function was designed with interlocks to pre-
vent simultaneous operation of the two ion engines. Such operation would cause major
electrical malfunctions as a result of the excess power demands and would also prevent
successful measurement of engine thrust. To protect against draining battery power
as a result of short circuits within the engine subsystems, special vacuum-safe-fus-
ing was developed and added to the system.

The power and telemetry subsystems were specifically designed to be operable during
the launch environment to provide a record of spacecraft operation.

b. Snacecraft Mechanical Syotom

e A

The mechanical subsystems of the SERT I spacecraft include the spacecraft
structure, the engine-extension subsystem, the precession dampers, and the antenna
ground plane and detuning wings. The function and salient features of each mechanical

subsystem are described in the following paragraphs; design details are discussed in
Section 1,

(1) Spacecraft structure: The main member of the structural and com-
ponent arrangement is the 30-inch-diameter baseplate to which the
majority of components are mounted, top and bottom. The distributor
frame, located at the top center of the baseplate, is an open structural
box, which contains additional components, supports the main routing of
the spacecraft wiring harness, and acts as an anchor for top-component
vibration braces. The third major structural element is the column, the
hollow cylindrical member which allows space between the baseplate and
the rocket fourth stage for mounting components on the underside of the
baseplate. In addition, the column houses some of the command-subsystem
components.

(2) /Engine—extension subsystem: The engine-extension subsystem pro-
vides mounting for the ion engines and implements their deployment
to the operating position after separation from the Scout vehicle.

The subsystem contains hinged ion-engine supporting arms, hydraulic
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(3)

)

dampers, and various coupling and attaching hardware. The hydraulic
damper is required to retard the unfolding motion caused by centrifugal
force of the spinning spacecraft and to reduce the limit impact shock,

Precession dampers: Two redundant, mechanically-tuned precession
dampers remove excess nutational motion from the spinning spacecraft
by dissipating kinetic energy in the form of frictional heat.

Antenna ground plane and detuning wings: The antenna ground plane,
(identifiable in the artist's concept, Figure 1-4) is a radial array of wires
located at the base of the spacecraft column. It is folded within a slot
before launch and is extended after spacecraft separation. The ground
plane serves to remove large nulls or asymmetries in the antenna patterns,
which result from the rather distended exterior of the spacecraft. The
detuning wings (also shown in Figure I-4) are a pair of metal loops extend-
ing from the baseplate at diametrically opposite locations 90 degrees from
the ion-engine mountings. These loops, which extend as a result of centrif-

ugal force, assist the antenna ground plane in removing large nulls from
the antenna patterns.

Figure I-4. Artist's Concept of the SERT Spacecraft in Flight




c. Spacecraft Electrical System

A block diagram of the SERT I electrical system is presented in Figure I-5.
The electrical subsystems are described generally in the paragraphs that follow. The
function, operation, and design of these subsystems and components are discussed in
detail in Section III.

(1) Mercury-bombardment-engine subsystem: This subsystem consists of
the ion engine and the auxiliary equipment necessary to convert space-
craft primary power into the special forms required for engine operation.
Its complement is as follows:

e  Mercury-bombardment ion engine;
e AC and DC power supplies, for power conversion;
®  Special battery supplies, to provide special potentials; and

° Neutralizer voltage control unit, for experimental variation of
engine operating parameters.

(2) Cesium-contact-engine subsystem: This subsystem includes the ion

o~ D cn -

cugiue and ils cleciiical support Squipmant:
® Cesium-contact ion engine;

e Inverter, DC power supply, and AC power supply for conversion’
of primary spacecraft power; and

e Control box, for necessary subsystem control functions. The control
box also provides mounting for the E-field-meter sensor.

(3) Telecommunications subsystem: This subsystem processes, multiplexes,
and transmits flight-telemetry data to the ground receiving stations. For
increased reliability, all active elements are redundant. The major compo-
nents of this subsystem are: ‘

e  Signal conditioners, which convert spacecraft data outputs into
signals compatible with the multiplexing equipment;

e Commutators, for time-multiplexing of spacecraft telemetry data;
e  Subcarrier oscillators and rf transmitters, which frequency-

multiplex the multiple channels of telemetry data and convert
them to modulated power;
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° Diplexer and transmitting antenna, which combine the outputs and
radiate these signals to the ground receiving stations.

; (4) Command and control subsystem: This equipment consists of the pro-
grammer, which controls the in-flight sequencing of spacecraft operations,

‘ and the command subsystem and auxiliary command unit, which decode

and implement ground commands.

(5) Power subsystem: The power subsystem consists of batteries, which
provide primary spacecraft power, and the power-switching unit, which
switches power to the various subsystems at the direction of the
command and control subsystem.

(6) Sensory subsystem: These subsystems measure special in-flight
operating parameters which are transmitted to the ground stations
via the telecommunications subsystem. It consists of:

® Sun sensors, which detect successive sun crossings as
, required for spin-period measurement;

® Radial accelerometer, for measurement of spin rate
through detection of changes in radial acceleration; and

® Jon-beam probe and mechanism, which is a device for mapping
the energy profile of the mercury-bombardment-engine exhaust.

d. Ground Systems

The ground equipment for the SERT mission consists of those facilities
necessary for prelaunch and launch support and for in-flight monitoring and control.
A simplified block diagram of the SERT I ground equipment is shown in Figure I-6.

The major elements of this equipment, and their functions, are as follows:

® Electronics Van, a mobile van which contains all equipment
necessary for launch-site checkout of the spacecraft;

® Blockhouse, Terminal Building, and Launch-Tower Equipment,
which consists of the control equipment and external power
sources necessary for immediate prelaunch checkout and control
of the spacecraft; and

\, ® Telemetry Building Equipment, located in the Telemetry Building

at Wallops Island, which receives in-flight telemetry data and
generates and transmits commands to the spacecraft in flight.

I-11
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D. SYSTEM OPERATION (MISSION PROFILE)

The basic SERT I mission requirements have been defined as the alternate opera-
tion of the two ion engines in the space environment and the transmission of data

sufficient to describe the operation of the engines and the spacecraft. As programmed,
the mission was to consist of the following:

e Prelaunch operations, consisting of those events and test sequences occurring
before Scout lift-off (T -0:00 time);

] Launch, all events occurring fromthe time of lift-off through spacecraft
separation at T +5:02 (minutes, seconds);

° Cesium-Contact-Engine operation, from separation through T +27:15;

e Mercury-Bombardment-Engine operation, from T +27:15 to destruction
at re-entry (approximately T +53:05).

The basic operational sequence of the mission is shown in Figure I-7. A more de-
tailed description of the flight plan follows.

Flight operations are initiated approximately 18 minutes before launch when an ex-
ternal signal, fed to the spacecraft through the "flyaway' umbilical, activates the
cesium-contact-engine subsystem, providing the time needed for warm-up of the
cesium boiler. The power required during the prelaunch cycle for all spacecraft
functions is supplied from an external source through the "flyaway' umbilical; some
additional power is also provided, as needed, to bring the batteries up to full charge.
Also included are provisions to bring the internal battery voltage down to acceptable
levels, using externally-located resistor banks.

The spacecraft is fully activated at approximately T -40 seconds, when the program-
mer is started and power demand is switched to the internal supplies. The telecom-
munications and the command and control subsystems are fully activated, and the
cesium-contact-engine subsystem warmup is continued on internal power. Full heater
power to the cesium-contact-engine subsystem is switched on during launch-vehicle
burning. After Scout fourth-stage burn-out, the spacecraft separation signal is fed
from the programmer to the Scout separation mechanism (tprog = 5 min, 31 sec).

A simultaneous signal uncages the precession dampers. At this point in time, the
spacecraft is spinning at approximately 100 to 120 rpm, the spin imparted to the last
stage before ignition. Within several seconds of separation, the following sequence
of events is directed by the programmer:

(1) Engines extended: The programmer signal closes a relay (in the power-
switching unit) to fire the two explosive pin-pullers holding the ion engines
in the retracted position. With the pins pulled, the ion engines, under the
influence of centrifugal force, move to the extended position in less than a
second. The change in spin-axis moment of inertia results in a decrease
in spin rate of approximately 20 percent.
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Figure I-7. SERT I Mission Profile

(2) Pod-door release: An electrical signal sent to the cesium-contact-engine
subsystem results in the release, under the influence of centrifugal force,
of the door covering the exhaust (down-stream) end of the cesium-contact-
engine pod. Removal of this door prepares the cesium-contact-engine,
hermetically sealed and evacuated before flight to prevent contamination,
for immediate operation.

(3) Ground plane release: After the engines are extended, the radial array of
wires which make up the antenna ground plane is deployed.

(4) Cesium-contact-engine high-voltage On: The programmer then directs start
of the cesium-contact-engine operation.

The complete flight sequence under programmer operation is given in Table I-3. Ion-
engine current, voltage, and other operational parameters are conditioned and trans-
mitted to the ground throughout the period of engine operation. Thrust measurement
is provided by spin-rate data which is generated and transmitted through the entire
flight.
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TABLE 1I-3. SERT I FLIGHT SEQUENCE¥*

Programmer s
Real Time Time Description of Event
T -20' - RF and telemetry On
T -18' T - Cesium~contact-engine subsystem On
T -15"to 3°* Prelaunch - Battery charging and payload telemetry evaluation
T -2' - Cesium-contact-engine superheater cutback confirmed by
telemetry
T -40'" to 25" - Activate Payload, confirm by telemetry
T -0 }i 35"10 40" | Lift-off, confirm by payload control console
- 1'59" Confirm full heat
- Launch 5131 Confirm separation
- 5'33" Confirm engines extended
- 5'35 Corfirm pod-door signal
- " 544" Confirm ground-plane signal
5'59" Confirm cesium-contact-engine high voltage On
Describe engine operation and use command No. 2, 7, and 8 as
required (Table 1-4)**
12129 Confirm cesium-contact-engine subsystem auto program
13'29" Confirm command No. 1 Armed
Cesium~Con- 20%0" Send and hold command No. 2
tact - o tane P . ) L
E | s i _ - sy i CeSlUm-CUNEe—engine wap neuirdizer vperauon —
tem nec mtii : Describe operation
21’ Release command No. 2. Use commands No. 1, 2, 7, and 8 as
required
26'34" Confirm trap neutralizer study completed
26'39" Confirm cesium-contact-engine high voltage Off
27'38" Confirm cesium-contact-engine subsystem Off
]' 27'39" Confirm cesium-contact-engine subsystem interlock Off
274" Confirm mercury-bombardment-engine subsystem On —
Describe engine parameters
27'46" to Observe boiler warm-up and send command No. 7 as required —
39'41" Call out engine light, and continue to describe engine operation
3944 Confirm probe study and describe operation
Mercury~ 41'43" Confirm NVCU study and describe operation--use command
Bombardment- No. 7 as required
Engine
Subsystem 47'33" Oonﬁrm. NVCU study completed
Operation 47'34" Confirm probe survey started and mercury-bombardment engine
neutralizer Off —describe operation
49'34" Corfirm probe survey started and mercury-bombardment
engine neutralizer On
51'34" Cornfirm probe survey started and mercury-bombardment
engine neutralizer Off-describe operation
53'34" Confirm mercury-bombardment-engine neutralizer On

*This Table is drawn from NASA-LeRC memorandum Subject: SERT I Launch Flight Events, dated June 29, 1964.

**Command sequences are included to indicate approximately where in the flight program they are "windowed" and would

be utilized if so required.
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During the cesium-contact-engine operational sequence, a number of experiments are
performed during which certain engine parameters are varied. The command sub-
system is used during this period to provide in-flight ground direction of the experi-
mental investigations. The programmer then directs the power-switching unit to de-
activate the engine subsystem after its sequence of operation is completed.

Power is then provided to the mercury-bombardment-engine subsystem at tprog =27
min. , 44 sec., initiating its operational sequence. After several minutes of boiler
warm-up, engine operation and thrust development should commence. The command
subsystem may be used at this point, and later, to assist in engine start through inter-
ruption of its magnetic field. During periods of mercury-bombardment-engine opera-
tion, the effect of neutralizer potential on engine performance is studied through pro-
gramming of the neutralizer voltage control unit (NVCU): the intensity of the ion beam
is mapped with the aid of the ion-beam probe mechanism, and operation with the neu-
tralizer voltage removed is attempted. Mercury-bombardment-engine operation is
programmed to continue through flight termination.

The flight sequence, as described above, will be followed if flight operations proceed
as intended. However, because of the possibilities of unexpected operation and/or in-
flight failures, an independent method of operation using the command subsystem and
auxiliary command unit was devised. The command subsystem can be utilized to pro-
vide three different approaches to flight direction:

(1) Assist ion-engine operational sequencing within the basic program, that is,
control of cesium-contact-engine neutralizer study, interruption of mercury-
bombardment-engine magnetic field;

(2) Direct programmer to advance from cesium-contact to mercury-bombard-
ment-engine operation, or vice-versa; and

(3) Completely direct in—-flight operations and sequencing in the event of pro-
grammer failure.

In summary, operation of the SERT I system consists basically of the alternate func-
tioning of either of the two ion-engine subsystems, with continuous telemetering of
in-flight data. Flight sequencing is achieved with the programmer, the command sub-
system, or a combination of the two. Operations commence shortly before lift-off

and continue until the spacecraft is destroyed after re-entering the Earth's atmosphere.

Total time of flight above the sensible atmosphere is approximately 50 minutes; launch
is easterly with an impact somewhere in the middle or south Atlantic. A peak altitude
of 2500 to 3000 nautical miles and a maximum communications range of 3000 nautical
miles are anticipated.

The third approach includes the generation of basic flight-operating signals, parallel-
ing those emanating from the programmer: cesium-contact-engine full-heat, separa-
tion, engines unfold, cesium-contact-engine pod-door release, ground-plane release,
cesium-contact-engine dc on, and cesium-contact-engine Off /mercury-bombardment
engineOn. A listing of the command subsystem functions is presented in Table I-4.
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E. SYSTEM DEVELOPMENT

This section will describe, in some detail, the development of the SERT I space-
craft system at RCA, from the inception of the program in mid-1961 until the delivery
of the T-3 flight spacecraft in mid-1964. As originally conceived, SERT I consisted
of the basic elements necessary to the steady-state operation of the ion engines:

® The mercury-bombardment and cesium-contact ion engines,
e Mercury-bombardment-engine power converters,

e Cesium-contact-engine power converters,

® A power subsystem,

' Telecommunications, and

e A programmer.

In this early concept, in-flight sequencing was to be performed by the programmer
alone; no experiments were considered during engine operation; and spin-rate sensing
was provided by the sun sensors only. The weight of this original configuration was
estimated at approximately 250 pounds. During the initial growth and development
cycle of late 1961 and early 1962, NASA decided to expand the basic mission and the
operational flexibility by adding the following equipment:

e The command subsystem, _
e The cesium-contact-engine control box,
e The neutralizer voltage control unit, and

e The mercury-bombardment-engine probe.

The command subsystem, as conceived, was to provide two types of control: (1) ground
control of a cesium-contact-engine sub-program in which system optimization would
be studied, and (2) a limited degree of system control to be used in overriding the
programmer. High noise immunity was a primary requirement for the command sub-
system since it was felt that generation of an rf noise field by the ion engines was
probable. Further protection against inadvertent commands being generated by this
noise was included in the system design by linking the command subsystem to the pro-
grammer to provide "windows,' or limited time periods, during which the command
subsystem was to be functional. Programmer back-up consisted of all events up to
and including turn-on of the cesium-contact engine, and advancing or resetting

the programmer to either the cesium-contact or the mercury-bombardment-engine-
subsystem cycles. These latter commands were those 'windowed' by the program-
mer. The cesium-contact-engine control box was added to perform needed control
and sub-programming functions in the cesium-contact-engine subsystem, and also
served as a mounting for the E-field meter. The mercury-bombardment-engine
subsystem was supplemented with the neutralizer-voltage control unit (NVCU) as an
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. experiment to determine the effect of neutralizer potential on engine operation. Sim-
ilarly, the ion-heam probe was conceived as an experiment to map the energy within
the beam of the mercury-bombardment engine.

No major configuration changes were required fo accommodate the above equipment.
The command subsystem was designed to fit the interior of the column structure; the
cesium-contact-engine control box was located atop the engine AC power sup-

ply; the NVCU was integrated above the distributor frame; and the ion-beam probe
equipment was mounted in the space beneath the baseplate.

A number of important system concepts evolved during this development period. Of
special interest are the following:

(1) The special nature of the ion engines makes them subject to damage if acti-
vated in air. Hence, it became necessary to develop engine simulators, or
"electrical dummy engines," to be used during system and subsystem testing.
Because of the excessive weight, size, and reliability-degradation of high-
voltage and high-current switches, a design approach was adopted in which
the need for such switches was obviated by interchanging the engine input
lead between the engines and the simulators., Similarly, the power input
leads for the engine subsystems were interchanged between the space-

- craft batteries and an external source. Under this philosophy, final

checkant of the SERT ion-engine nower converters cannot sonveniontly he
conducted any later than 8 hours before launch, at which time final mating of
the heat shield to the Scout rocket is to be accomplished.

(2) Usually, the signal and power for activating the separation squibs to release
the spacecraft separation clamp are provided aboard the Scout fourth-stage.
For SERT 1, it was decided to save approximately 10 pounds by providing
both signal and power from the spacecraft. This decision was felt to be logi-
cal since (a) the programmer, which provided the separation signal, was im-
portant to mission success in any case, and (b) the spacecraft already con-
tained adequate squib-firing power.

(3) Scout generally provided a 'clamp-catcher' on the final stage to prevent the
separation clamp from striking the spacecraft during separation. However,
to accommodate this device, the antenna whips would have to be mounted away
from the base of the spacecraft column; therefore, to achieve the better an-
tenna performance available with the optimally-positioned antennas, special
""clamp-deflectors' were designed to mount at the base of the spacecraft and
the ""clamp-catcher'" was not used.

- (4) Thermal analysis early in the program revealed that, unless special provi-
sions were made,the cesium-contact-engine-subsystem inverter would over-
heat during the programmed flight, if the spacecraft temperature exceeds
70°F. It was decided, therefore, to cool the spacecraft during the immediate
prelaunch phase using dry air or nitrogen ducted to the heat shield.
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() Immediate in-flight operation of the cesium-contact-engine subsystem dic-
tated the addition of a pre-heat cycle during the final countdown. To alleviate
drain of the main battery power source, it was decided to introduce external
power throughthe "flyaway'" umbilical. External power for the telecommuni-
cations subsystem was also provided.

The first complete spacecraft (configuration A of Table I-5) was thus evolved to include
the subsystems and special system characteristics described above. The mechanical
design and integration approach was to place those components having the greatest
thermal dissipation at outboard locations (so as to maximize heat radiation to space)
and also to arrange components, especially the batteries, for ease of installation and
removal. As described in paragraph II-D, balance and moment of inertia require-
ments were also critical factors in establishing component arrangements.

The first operating SERT model of the A configuration was an electrical prototype
model, designated T-2. Its assembly and operation were preceded by a series of
mechanical tests performed on two mechanical models identified as T-1A (static test
model) and T-1B (dynamic test model). The T-1A and T-1B models served to verify
the basic mechanical integrity of the spacecraft design.

During early electrical testing of the T-2 model, considerable difficulty was experi-
enced in attaining successful operation of the power-switching unit (PSU). Because of
the requirement to switch the 20- to 30-ampere ion-engine-subsystem current in a
relatively small space, the original design of the PSU employed silicon-controlled
rectifiers (SCR's) for major switching. However, the unusual load characteristics of
the ion-engine power converters and the transients induced into the system by these
components caused inconsistent operation of the SCR's in the power-switching unit.
The problem was solved after it was determined that the high currents could be con-
trolled at the inversion circuits within the ion-engine power converters. The PSU
was then redesigned with relays replacing the SCR's; these relays provided low-
current switching needed to control the aforementioned inversion circuits.

During the latter stages of T-2 development, NASA requested RCA to study the feasi-
bility of adding several additional equipments to the existing design and to investigate
the structural modifications necessary (1) to support these additional components, and
(2) to reduce vibration amplifications in the area of some of the ion-engine equipment.
The new components under consideration were (1) an accelerometer for thrust meas-
urement, (2) a calibration device for in-flight moment of inertia determination, and

(3) a system for measuring rf noise created by the ion beam. In consideration all
program factors, it was decided after completion of the study (Reference I-1) to add
only the radial accelerometer to the spacecraft. This device measured acceleration
radial to the spacecraft spin axis; its output, being a frequency proportional to accel-

eration, provided the accuracy necessary for precise measurement of spin-rate vari-
ation (and thrust).
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The accelerometer output would directly modulate the rf transmitter without interfer-
ing with the existing subcarriers. The device was procured by NASA and provided to
RCA for integration aboard the spacecraft.

The T-2 model was delivered to NASA for use in vacuum testing of the ion-engine sub-
systems integrated with the spacecraft system. Concurrently, RCA conducted a vibra-
tion testing program on the T-1B mechanical model, revised to represent the new B
configuration (Table I-5). The results of this testing are described in paragraph II-B.
This model was later modified to serve as a vibration-qualification test bed for SERT
subsystems, and, in this configuration, was identified as T-1B-2.

Because of difficulties with the ion-engine subsystems, uncovered during T-2 vacuum-
chamber testing, NASA introduced design modifications to the component equipment
and to the overall system as well. Consequently, NASA requested RCA to consider the
design changes necessary to accommodate larger and heavier mercury-bombardment-
engine power converters. A reduced vibration environment was also specified as a
result of the refinement of flight data on the Scout vehicle. RCA determined, after study
(Reference I-2) of the mechanical and thermal environmental changes, that the new
power converters for the mercury-bombardment ion engines could be integrated with
some shift of equipment locations (for example, moving the subcarrier oscillators from
the side of the mercury-bombardment-engine power converters to positions atop the
main batteries) and with an increase in the structural support provisions for these
converters. Major structural rework, however, was found to be unnecessary.

Further system modifications arose from continued T-2 testing by NASA and from a
system reliability investigation conducted by the system contractors under NASA direc-
tion. These modifications included the following:

(1) The electronic commutators in the telecommunications subsystem were re-
placed with mechanical commutators. This was necessary to prevent
commutator damage resulting from system transient overvoltages induced by
high-voltage arcing in the ion engines.

(2) The signal conditioner circuitry was modified to both accommodate the
mechanical commutators and to improve reliability. Protection against ion-
engine-induced transients was also added.

(3) The auxiliary command unit, which provides complete ground control of
system operation, was added to the command and control subsystem. Addi-
tional command functions found to be useful during T-2 testing were also
implemented through this modification. Special diode networks were later
added, at NASA request, to modify several command functions for the
cesium-contact-engine and mercury-bombardment-engine subsystem.
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(4) Special explosion-proof fusing was developed and incorporated in the system
to protect against complete system failure due to in-flight short-circuiting
of the main power source by either of the two ion-engine subsystems.

(d) To protect against inductive transfer of voltage transients, the harness was
separated into three major sections: signal, high voltage, and high current.

The configuration, modified to include the enlarged mercury-bombardment-engine
power converters, was subjected to an investigation of mechanical integrity and
vibration-resonance characteristics using a new mechanical model identified as T-1D
{shown being tcsted in Figurc II-6). Subsequently, the flight prototype spacecraft
(T-1B-3) was integrated to the final configuration (Table I-5) and subjected to an
electrical test program, a vibration qualification program, and a thermal calibration
at RCA. It was then shipped to the Lewis Research Center where it was subjected to
thermal-vacuum and transient-vacuum qualification tests with operating ion engines.
During the thermal-vacuum testing, ion-engine subsystem malfunctions were traced
to high-voltage breakdown within the ion-engine power-supply connectors. These
connectors were conventional designs, modified for high-voltage applications. This
problem was resolved by encapsulating the high-voltage leads directly within the
existing component receptacles. At this time, RCA and NASA conducted concurrent
investigations and development programs concerning high-voltage terminations and
disconnects. Although a qualified high-voltage disconnect emerged from the evaluation
and it avpeared as though a successful encansulation technione was develoned  the in-
vestigation revealed some uncertainty as to the aging and repetitive thermal-cycling
effects on the encapsulation.

Shortly after T-1B-3 testing, the flight spacecraft (T-3) was integrated to the T-1B-3
configuration and was acceptance tested at RCA and the Lewis Research Center. It
was then shipped to the Wallops Island launch site where final checkout and prelaunch
preparations were accomplished. The final full systems test was conducted just before
Scout integration; the engine leads were then removed from the ion-engine simulators
and installed on the flight engines for the last time. This operational modification also
deleted the requirement for utilizing the electronics van during final launch operations;
rather, final spacecraft systems confirmation was obtained via telemetry using the
ground receiving station at the Wallops Island Telemetry Building.
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SECTION Il
SPACECRAFT MECHANICAL DESIGN

A. GENERAL

The complete SERT I spacecraft, ata diameter of 30 inches and a height of 28 inches,
was designed to fit within the 34-inch heat shield of the Scout rocket with internal
clearance of approximately 1inch. The components are mounted directly to the top
and bottom of the spacecraft baseplate, inside the hollow supporting column beneath the
baseplate, and hinged along side the structure to provide an extremely compact 375-
pound spacecraft. The high density of the spacecraft coupled with its very high heat
power (600 watts) dictated a component layout in which thermal considerations were
paramount.

This section describes (1) the design, construction, and development of the SERT
structure and the mechanical subsystems required to support spacecraft operation;

(2) the thermal considerations which influenced the spacecraft design; (3) the various
factors which govern the selection of component arrangement and mounting and (4)
the motheds uced in fabricating and handling the spacecialt aud perivrming mechanical
measurements, The mechanical configuration of the SERT I spacecraft is shown in
Figure II-1; Figure II-2 shows the location of components on the top side of the base-

plate.

B. STRUCTURE
1. General Discussion

The SERT I structure consists of four major assemblies — the lower ring, the
center column, the baseplate, and the distributor frame — which form an integrated
structural member (Figure II-3) supporting all the components mounted on the base-
plate and providing, at the lower ring, an interface for mounting the spacecraft to the
adapter section of the fourth stage of the Scout rocket.

The lower ring is essentially a hollow cylinder, 3.940 inches high, with flanges at both
ends. The top flange is a simple, radially orientated rib of constant diameter and
height. The bottom flange, however, is more complicated in shape. It is on this
bottom flange that pads of various sizes and orientations are machined for the attach-
ment of the deflectors for the rocket quick-disconnect clamp and the antenna mounts.
In addition, a radially deep, annular groove is machined on the outer surface (edge)
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Errata:

Page II-2, FigureIl-1. . . . The "TOP VIEW (-X SIDE)" should be " TOP
VIEW (+Y SIDE), " and the "CESIUM-CONTACT ION ENGINE" and the
"MERCURY-BOMBARDMENT ION ENGINE" callouts are reversed. In the
"TOP VIEW ( -Y SIDE)" the ""CESIUM-CONTACT ION ENGINE" and the
"MERCURY-BOMBARDMENT ION ENGINE" callouts are also reversed.
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Figure II-2. SERT I Component Layout
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of this flange for storing the antenna ground-plane wires until they are extended during
flight. Lastly, an interface is provided to which the adapter of the fourth-stage

rocket is attached. For a more detailed description of the lower-ring assembly,
refer to Paragraph II-B.6.

The center column is a thin-wall, flanged, cylinder. The lower flange of the center
column is bolted to the top flange of the lower ring and its upper flange is bolted to

the hub of the circular baseplate. The height (6.763 inches) of the column is dictated

by the critical heights of some spacecraft components. That is, the components mounted
on the top side of the baseplate can not exceed the envelope definedby the spacecraft heat
shield, and the components suspended from the botlom of the baseplate can not inter-
fere with other components mounted on the lower-ring assembly. The space inside

the column is utilized to house the antenna diplexer and the command subsystem. For
more details, refer to Paragraph II-B, 5.

The baseplate (Figure II-4) is essentially a circular flat plate reinforced by a cylin-
drical hub at the center and thirty-two radial ribs of tapering height. The baseplate
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is further strengthened by two reinforcing rings concentric with the hub; the first one
is located near the periphery of the baseplate, the other about mid-way between the
hub and the first ring. The entire baseplate is machined from a forging of magnesium
alloy AZ-80A-T5. This method of fabrication was chosen because of its inherent ad-
vantage, among others, of being able to provide generous fillet radii between inter-
secting structural members, thus minimizing effects of stress concentration. This
was a major consideration in the design of the baseplate for vibratory loads. The
baseplate is described in more detail in Paragraph II-B. 4.

A distributor frame (Figure II-5) is mounted on the top of the baseplate at its center.
To this frame, electronic components such as the neutralizer voltage control unit, pro-
grammer, signal conditioner, and power-switching unit are attached. The four corner
posts of the distributor frame are reinforced for the attachment of the brackets which
are used to restrain lateral motions of some components located at the outer edge of

the baseplate.

Mounted on the major assemblies described above are various secondary structural
members which support several spacecraft components:

®  Supporting brackets for each of the two ion engines and their associated
arms and hydraulic dampers are attached to the baseplate at the machined
bosses on the bottom.

¢ Miscellaneous brackets for the mounting of the detuning-wing assemblies
and ion-beam probe mechanism are bolted to the bottom of the baseplate
at its rim.

Figure II-4. Baseplate Figure II-5. Distributor Frame



® A strut and a stabilizing bracket, attached to the center column at its upper
and lower flanges, provides mounting for the accelerometer.

e The supports for the locking devices of the hydraulic damper assemblies are
mounted on the lower flange of the center column.

The SERT I structure supports a total spacecraft weight of 375 pounds, with most of the
weight held by the baseplate. The structure was originally designed for a gross weight

of 300 pounds and a vibration load of 53.5 g in the thrust axis; this load corresponds to
a 10.7-g input in the critical frequency range of 50-500 cps, multiplied by an estimated
amplification factor of 5.0. Vibration loading in the lateral direction, shock loading,
and acceleration loading are less critical than thrust-axis vibration. Throughout the
program, additional weight could be accommodated with no major structural modifica-
tions because of a reduction in the specification vibration level. A more detailed pre-
sentation of design loads on the SERT I structure can be found in Reference II-1.

Under the action of loads in the thrust direction, the SERT I structure transmits the
loads to the fourth-stage interface by means of bending and shear in the baseplate and
direct, axial, tension, and compression in the column and the lower ring. For laterally
applied loads, the structure acts as a cantilever beam fixed at the fourth-stage inter-
face (the vibration facility interface, upon which the design is postulated). However,
there is some minor local bending in the baseplate due to the transverse loads on the
baseplate-supported components.

Dynamically, the SERT I spacecraft is a multi-degree-of-freedom system: the response
of the spacecraft, in general, and some components, in particular, to an applied excita-
tion force is of such a complex nature that an accurate theoretical analysis becomes
very involved. However, by treating the spacecraft as a simple mass-spring-dashpot
system, a natural frequency was determined which agreed very well with the average
natural frequency found in subsequent vibration tests. In this simple system, assum-
ing the spacecraft to be a single mass — with the baseplate, the center column, the
lower ring, and the rocket fourth-stage adapter acting as springs in series — and
assuming a low critical damping ratio of 0.05 for the dashpot, the natural frequency

is 89.5 cps. It should be noted that this natural frequency is essentially dictated by
that of the baseplate which has a much lower spring constant than the other structural
members.

The weights of the major structures are 10.4 pounds for the lower ring and the
column, 10.7 pounds for the baseplate, and 4. 87 pounds for the distributor frame,

2. Development of the Structure

The development of the SERT I structure is described in the following section.
It parallels, to some extent, the configuration changes described in section I-E.

The mechanical performance of configuration A, the original design, was evaluated in

a series of model tests consisting of (1) static load tests of the baseplate, (2) deter-
mination of vibration resonance for the entire structure, and (3) structural integrity
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tests at prototype vibration levels. The static load tests (refer to Paragraph IL B. 4. c)
verified the capability of the structure to withstand anticipated loads. For the con-
figuration-A vibration testing, a model of the spacecraft, designated T-1B, was devel-
oped, utilizing dummy weights to simulate the components. For instrumentation of
this model, dynamic strain gages and accelerometers were used (Figure II-6). During
the resonance surveys (References II-4 and II-10), most components exhibited ampli-
fication factors of eight-to-one, or less, with some components being slightly higher.
The integrity of the basic structural design was satisfactorily demonstrated in a
vibration test at full prototype level.

The basic structure remained essentially unmodified for the B configuration, although
the component layout was changed to accommodate new components (especially the
radial accelerometer) and additional connecting brackets. The vibration survey model
T-1B was integrated to the new B configuration, and a vibration evaluation was per-
formed, with the major aim the reduction of amplifications at the power supplies for
the mercury-bombardment and cesium-contact ion engines.

The structure was further evaluated for the B configuration during a vibration qualifi-
cation test performed on model T-1B-1. This model, shown being tested in Figure
II-6, was integrated with "live' components and differed from a flight spacecraft only
in that a full harness was not integrated. As discussed in References II-11 and I-12,
the structural behavior was satisfactory and essentially unchanged from the testing
conducted on the T-1B model.

Further component rearrangements and the modification of component attachments were
required to accommodate the C configuration, but no major structural modifications
were necessary. In particular, the number of attachment points, or underside mounting
blocks, required for the heavier mercury-bombardment-engine power supplies

were increased from four to six. A high-frequency vibration isolation system for the
radial accelerometer was also designed and integrated.

The new configuration was incorporated in a vibration model, designated T- 1D, shown
being tested in Figure II-6.

The purposes of the T-1D tests were first to evaluate the effects of the modifications
on the vibration characteristics of the structure, then to prove the structural integrity
of this T-1D configuration under the prototype loading condition, and finally to deter-
mine the ultimate strength of the structure by test to destruction. The testing consisted
of a series of survey runs, complete prototype tests in the thrust and the lateral
directions, and higher g-level tests in the critical thrust direction. The T-1D model
successfully met all the prototype vibration test requirements and passed the 8-, 10-,
and 12-g runs during the high g-level testing, which was finally terminated after the
14~g run when the Scout separation mechanism cracked. A detailed report of the T-1D
vibration testing is given in Reference II-2.
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Immediately after the T-1D vibration testing, a prototype model, designated T-1B-3,
was assembled with all the live components, representing all modifications to the T-1D
model; additionally, this model contained a few new items such as the ion-beam-probe
power supply, the fuse block, the auxiliary command unit, and the diplexer ballast load.
The T-1B-3 model was then subjected to prototype-level testing in February, 1964; the
structure proved capable of carrying the heavier load. The dynamic responses of all
instrumented components were in very good agreement with those obtained in past tests,
with the exception of the response from cesium-contact DC power supply and control
box. Here, the X-Y plots indicated some abnormally large responses over the frequency
band from 80 to 100 cps. Responses of this nature were not evident in all the previous
tests. An examination of the baseplate after the test did not reveal any local pull-out

in the region where this component was mounted; however, it was found that the covers
for this component were not rigidly connected to the mounting bases. Being mounted

on these covers, the accelerometers thus register large excursions at the critical
frequency range.

Upon completion of the T-1B-3 vibration testing, the entire spacecraft, with the Scout
separation mechanism, was attached to the spin-test rig. The spacecraft was spun at
170 rpm and the ion engines were deployed. The deployment of the ion engines to the
stops was accomplished with a smooth motion apparently without any shock. After

the spin test, some slight leakage of the water-glycerine fluid used in the hydraulic
damper assembly of the engine deployment system was discovered. This small
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the operation of the ion engines in outer space as some of the escaped fluid evaporates
immediately. The fluid which deposits on the structure produces some vapor pressures,
but these pressures would not be sufficient to reduce the vacuum enough to cause arc-
over in the high-voltage circuit of the ion engines. A more detailed discussion of the
effects of the damper fluid leakage on the performance of the spacecraft is given in
Reference II-3.

Regarding the spin test, two specific points of interest are worthy of note: (1) the
operation of the release mechanism of the engine deployment system was successfully
demonstrated; and (2) the ability of the baseplate to withstand the dynamic loads caused
by engine deployment was also demonstrated.

During the T-1D vibration tests, the locking device in the release mechanism had
developed some degree of binding to the extent that release of the engines from their
locked positions could be hindered. Even though it was firmly believed that the binding
had been developed in the higher-than-prototype-g-level runs, various parts of the
locking device were modified in the T-1B-3 model to increase their strength, thus
improving the reliability of the deployment system. These parts were then subjected
to the T-1B-3 prototype vibration testing; they functioned flawlessly in the subsequent
spin test. Examination of these parts after the spin test revealed no yielding whatso-
ever. The modifications to the locking device are discussed in Paragraph II-B. 8.
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3. Vibration Characteristics

The SERT I spacecraft is a multi-degree-of-freedom system, and as such, the
response of the structure, in general, and some components, in particular, to an
applied force is of a very complex nature. Extensive vibration testing, therefore,
was considered a major phase of the design and development program. Three
comprehensive vibration tests were conducted, corresponding to configurations
A, B, and C.

The first test was performed on the T-1B model which incorporated all the prototype
structural parts in the spacecraft but no '"live' components; the components were re-
placed with dummy weights. The purpose of this test was to establish the transmissi-
bility of major components, with sinusoidal or random-noise input excitations applied

at the base of the column. In addition, this test, in which the spacecraft was vibrated to

prototype specifications, was to prove the structural integrity of the baseplate, the
column, and the lower ring. The major prototype condition was a sine-wave sweep of
10. 7-g amplitude in the critical frequency range of 50-500 cps, representative of the
ABL X-248 Scout last stage. The results demonstrated that the amplification of most
components was less than eight-to-one and that the baseplate and column were capable
of withstanding the prototype vibration level without exceeding the allowable stresses.
However, few components did show slightly higher amplification due to the method

in which they were mounted on the structure. Subsequent improvements made on these
components alleviated this condition.

Based on the outputs shown in the response curves during the vibration testing, the
power supplies for the mercury~-bombardment and ceslium-contact engines were
component-tested by NASA. The test results indicated that some improvement in their
environment was necessary. Consequently, braces were added on the T-3 (flight)
spacecraft to restrain the lateral movement of the critical components. Furthermore,
an accelerometer was added to the design, requiring a supporting strut and some
rearrangement of the components. The T-1B model was then modified to the B con-
figuration, and was subjected to a series of vibration tests during December, 1962,
and January, 1963.

The purpose of these tests were (1) to determine the dynamic vibration responses of
the spacecraft components, including the newly added accelerometer with the new
spacecraft configuration, and (2) to attempt to improve the vibration environment of
certain GFE and of other spacecraft components affected by the changes in configura-
tion.

During this evaluation, two methods of improving the vibration environment were
considered: (1) the increase of the structural rigidity in accordance with suggestions
set forth by NASA, and (2) the use of supplemental braces or brackets between com-
ponents to reduce excursion during vibration.

The results showed that the first approach, which provided a more rigid structure
through the addition of diagonal struts from the base of the column to the baseplate,
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did not improve the vibration environment. The second method reduced the vibration
transmissibility considerably for all components, particularly with regard to lateral
excitations. Most components had an amplification ratio of five-to-one, or less,

and the greatest amplification ratio was approximately eight-to-one.

Full prototype-level testing was then successfully performed using a reduced specifi-
cation (6.0 g's from 50-500 cps) as a result of refinement of flight data on the Scout
vehicle. More detailed infor mation is given in Reference II-5.

In addition to the vibration tests previously discussed, two more full-scale vibration
tests were conducted after the SERT spacecraft was revised to the T-1D snd T-1B-3
configurations, respectively. The T1-D configuration was basically the same as the
T-1B configuration, modifier to incorporate larger and heavier power supplies for

the mercury-bombardment ion engines and to introduce vibration-isolator pads between
the mounting feet of the radial accelerometer and its mounting bracket. These pads
were designed to isolate the radial accelerometer from excessive dynamic responses
which had been observed previously during the T-1B vibration surveys in the critical
frequency range of 300 to 2000 cps. Vibration-test results showed that the natural fre-
quency of the SERT structure was reduced by these changes and that the isolator pads
effectively isolated the accelerometer.

A comparison of the vibration responses to thrust-axis inputs for the T-1B (modified)
and T-1D models is shown in Figure II-7; the responses were measured at the AC

and DC power supplies of the mercury-bombardment-engine subsystem. For both
models, the transmissibilities are less than 5 to 1, although those for the T-1D are
less than those for the T-1B. Of particular note are the characteristic fundamental
baseplate frequencies for the T-1B model (90-100 cps) and the T-1D model (75-85 cps).
The reduced value for the T-1D model is related to the increase in spacecraft weight.
Figure II-8 illustrates the vibration improvement obtained for the radial accelero-
meter with the high-frequency isolator system. (See Reference II-2 for more details).

4. Baoseplate
a. General

The baseplate (RCA Drawing No. 1173773, Rev. E) is machined from an AZ-
80A-T5 magnesium forging. Magnesium alloy was chosen as the material for the base-
plate because of its excellent machinability and its high damping capacity, i.e., its
capacity to absorb vibrations, thus reducing stresses. The baseplate is basically
a reinforced, circular, 0.090-inch-thick flat plate, 30 inches in diameter. The re-
inforcement consists of a center hub, approximately 10 inches in diameter; two
cylindrical rings, which are concentric with the hub; and 32 radial ribs. The two
cylindrical rings are located at radii of 8.5 and 14 inches. The center hub, which
has a flange containing 32 equally spaced tapped holes is used to attach the baseplate
to the center column. An annular groove with closely controlled tolerances is
machined on the flange; this groove accepts the annular tongue on the mating flange of
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Figure II-8. Dynamic Response of Radial Accelerometer Mounted With and Without
Urethane Isolators

the center column. This tongue-and-groove arrangement relieves the mounting bolts of
transverse shear force due to lateral loads on the structure.

The 32 radial reinforcing ribs (thickness 0.1 inch) taper from a height of approximately
2.5 inches at the hub to 0.75 inches at the edge of the baseplate. At the various inter-
sections of the ribs, rings, and center hub, generous fillets (typical radius 0.25 inches)
are provided. All material thicknesses throughout the baseplate were determined on

the basis of strength requirements and also upon limitations imposed by the contour
milling process used to fabricate the baseplate. Figure II-4 is a photograph of the
baseplate, showing some of the above details.

Groups of reinforced bosses are machined on the bottom side of the baseplate. The
bosses allow attachment of the supporting brackets for the hydraulic-damper assemblies
and distribute the hydraulic-damper load into the reinforcing radial ribs. The thick-
ness of the ribs in these regions is increased from the typical value of 0.105 inch to
0.150 inch for the transmission of these highly localized damper loads.
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b. Functional Description

The baseplate is a supporting platform for nearly all the spacecraft components,
most of which are mounted on the top surface, although a few are suspended from the
bottom. To maintain spin stabilization, the components must be arranged so that a
favorable ratio of the mass moment of inertia about the spin axis to that about the
lateral axis can be achieved. Fortunately, to satisfy thermal requirements, most of
the heavier components were located toward the outer portion of the baseplate; hence,
the favorable ratio was attained. This, however, introduced bending in the baseplate.
The maximum bending moment is caused by vibratory load on the components due to
excitation in the thrust axis and occurs at the junction of the center hub and the radial
ribs. This bending moment is counteracted by a couple. One of the radially orientated
couple forces acts on that portion of the baseplate inside the center hub; the other acts
on the lower flange mating with the center column. The vibratory load on all the base-
plate-supported components in the thrust direction is then transmitted to the center
column, through the hub, as tension and compression.

Besides electronic components, the baseplate also supports the hydraulic-damper
system for the ion engines, the precession dampers, and other miscellaneous items
such as detuning-wing assemblies and ion-engine stops. To permit brackets for sup-
porting these items to be attached, the outer rim of the baseplate (beyond the 28. 00-
inch-diameter reinforcing ring) is 0.250 inch thick instead of 0.090 inch as in the
remaining portion of the baseplate.

c. Development

Before the vibration tests on the T-1B and on the modified T-1B models, the
baseplate was subjected to static load tests on March 2, 7, and 14 of 1962. A whiffle-
tree arrangement, in which a series of bars, plates, and rods were assembled on the
baseplate, was used (See Figure 11-9). The bars, plates, and rods were so connected
that a load in a rod attached to a hydraulic jack would load each simulated component

plate in proportion to the total force. This type of loading would apply for any level
of g-load.

The first static test was basically a verification of correct assembly of the whiffle-
tree arrangement; the load applied was 2g. The second test was carried out for a

20-g load with stress coat applied to the entire surface area of the baseplate, except
the top surface and bolt holes. Stress coat was used in this test to indicate areas of
high stress so that strain gage could be placed in these areas for the final static test.
In the last test on the baseplate, static loads of 10, 20, 25, 30, and 33 g were applied.
The maximum stress was found to be 14,000 psi (less than half the strength of the
baseplate material, AZ-80A-T5 magnesium alloy). A detailed account of the baseplate
static testing is given in SERT Logbook No. SL-20 (Reference II-6).
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Figure II-9. SERT Static Load Test

5. Column
a. General

The column assembly (RCA Drawing No. 1706516, Rev. B.) essentially con-
sists of the column (RCA Drawing No. 1703092, Rev. E.) and the hydraulic-damper-
locking brackets. The column is machined from an annealed forging of 7075 aluminum
alloy to form a thin-wall cylinder with end flanges. The rough machined piece is then
fully heat-treated and final machined to obtain a wall thickness of 0.060 inches. This
sequence was used to avoid cracking of the workpiece during machining. Had the
column been fully heat-treated, the removal of the large amount of the core material
to form the thin-wall cylinder would produce high internal stresses and consequently

result in cracking of the wall.

The column has an inside diameter of 8.750 inches and an overall height of 6.763
inches. A smooth transition from the thin wall to the upper and lower flanges is ac-
complished by incorporating a gradual taper of the wall at each junction with the
flange. The taper minimizes effects of stress concentration and reduces the dis-

continuity stresses.
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The upper flange of the column matches with the baseplate mounting flange in the
center hub. The tongue part of the annular tongue-and-groove shear joint is on the
top surface of this flange. This shear joint was designed to relieve the flange bolts
of transmitting lateral loads in shear. The lower flange matches with the lower-ring
mounting flange. There are 21 holes spaced on the basis of 24 equally spaced holes
on a 9.600~inch bolt-circle diameter. Mounting brackets for the locking devices of
the ion-engine hydraulic dampers are attached to the column wall and to this flange
at two locations.

The height of the column is determined by the space required for accommodating

various components mounted below the baseplate and by the spacecraft heat shield,
which fixes the ceilings of the components mounted on top of the baseplate.

b. Functional Description

The column assembly, which supports the component-laden baseplate, is the
main load-carrying member of the structure. It was designed to withstand vibratory
loads in all directions: for excitation in the thrust direction, the column acts as a
tension and compression member; for lateral excitations, the column acts as a canti-
lever beam. The rigidity of its lower flange is utilized to support the hydraulic-
damper locking devices which react to the static, compressive load acting on the hy-
draulic cylinders caused by the centrifugal force on the stowed ion engines. The
mounting brackets for the accelerometer are supported from the column by bolts in
both upper and lower flanges of the column.

c. Development

There has been no development work done on the column since its original
conception. However, at NASA'S request design studies of a cast column with built-
in supports for the mercury-bombardment-engine power supplies was made. Feasibility
of a thick-wall column was also investigated. These studies were part of an effort to
reduce the amplification factor of some electronic components. These studies, however,
did not develop into hardware stages as other effective means of reducing amplification
had been found.

6. Lower-Ring Assembly

The lower-ring assembly (RCA Drawing No. 1703 117, Rev. F.)could be considered
as the foundation of the SERT structure. It supports the column and baseplate at the
top and connects with the adapter of the fourth stage of the Scout rocket at the bottom.
Aside from being a major load-transmitting structural member, the lower ring pro-
vides storage space for the antenna ground-plane wires, the flange for attaching the
antenna coupling network and the command subsystem, various bosses and pads for
mounting the antennas and the deflectors for the separation clamp of the rocket
fourth stage. Because of its multi-purposed design features, the ring is a rather
complicated machined piece.
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Basically, it is a hollow cylindrical housing 3.940 inches high. Its top flange matches
with the column lower flange; the two flanges are joined by twenty-one 8-32 bolts.

The top flange also extends radially inward to form a mounting surface with eight
tapped holes for the antenna diplexer mounting plate.

The upper two inches of the cylindrical housing has a constant wall thickness of 0. 150~
inch. The wall thickness then increases sharply so that the cylinder becomes a thick
ring for the remaining height of the housing. From this thick ring, mounting pads,
flanges, and radially deep annular grooves are machined.

The material for the lower ring is 2014 T-6 aluminum alloy. This material was
chosen because of its excellent machinability and strength. For added reliability,
steel-thread inserts are used in all tapped holes in the mounting pads and flanges.
The lower-ring assembly was subjected to two prototype vibration tests and several
vibration surveys in which the structural integrity was successfully demonstrated.

7. Distributor Frame

The distributor frame (RCA Drawing No. 1703282) is a welded frame of aluminum
angles and plates (See Figure II-5). It provides mounting for various components,
including the programmer, the neutralizer voltage control unit, the signal conditioner,
and the power-switching unit. In the first T-1B vibration test, a 12-to-1 amplification
factor existed at the programmer. The frame was modified by the addition of stiffen-
1ng gussets, and a vibration test was conducted on the stiffened frame. This test
showed a decrease of amplification from 12-to-1 to 3-to-1.4 (Reference II-7).

In order to reduce amplification at some components mounted on the baseplate, lateral
braces were installed. These braces connect the components to adapter angles on the
distributor frame which were, in turn, attached to the reinforced corner posts. The

frame was adequate for withstanding the stress and strain imposed by the additional
lateral braces.

The distributor frame was also modified to add a supporting bracket to each of its two
vertical posts closest to the cesium-contact-engine inverter. These brackets connect
an added lateral tie bracket for this inverter to the distributor frame. It was felt

that this inverter, which had recently been increased in its height and weight, might
need a structural tie to restrain its lateral movement during vibratory excitation. All
of the modifications were made before T-1B vibration testing.

8. Engine-Extension Subsystem
a. General

The SERT engine-extension subsystem consists of the ion-engine supporting arms,
the hydraulic-damper subsystem, and the brackets for mounting these arms and dampers.
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The damper subsystem is used in conjunction with the ion-engine-supporting-arm
mechanism for the purpose of retarding the motion of, and hence reducing the shock
loads on, the two ion engines during the unfolding operation. This operation utilizes
the centripetal forces acting on the engines due to the spinning of the spacecraft.
These forces create unbalanced moments at the hinge points of the engine supporting
arm causing the engines to leave their stowed positions after they are unlocked by the
firing of an exploding pin puller.

The SERT hydraulic-damper subsystem is a self-contained assembly consisting of
three hydraulic-damper subassemblies interconnected by flexible hydraulic hoses.

The major parts in the damper subassembly are the cylinder, end caps, piston, seal-
ing diaphragms, and the flow-regulating valves built into the end caps. The hydraulic-
damper subsystem is so assembled that the upper chamber of one damper subassembly
is connected to the lower chamber of another. By connecting the three dampers in

this manner, a self-contained, synchronized, hydraulic-damper subsystem is achieved.
The subsystem is filled with a hydraulic fluid mixture of 50-percent (by volume) water
and 50-percent glycerol. At this ratio, the freezing point of the mixture is below the
lower limit of the operating temperature.

The hydraulic-damper subsystem is so arranged that there are two dampers on the
cesium-contact-engine side and one on the mercury-bombardment-engine side. This
arrangement was made according to the space available in the spacecraft. Thus, the
hydraulic dampers, the engine supporting arms, and the brackets form a linkage
system which prescribes the movement of the ion engines during extension. Figure II-10
shows the engine extension subsystem attached to the SERT structure. A detailed report
concerning the design and development of the hydraulic-damper subsystem is given in
Reference II-8.

MERCURY-BOMBARDMENT~ENGINE-ARM 0
CESIUM=-CONTACT-ENGINE-ARM MOUNTING BRACKET LT
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/ N

CESIUM-CONTACT ENGINE

2 ENGINE
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HYDRAULIC DAMPER , N N <P HYDRAULIC DAMPER
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HYDRAULIC HOSES

Figure II-10. Engine-Extension Subsystem Mounted on the SERT Structure
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b. Development

The hydraulic dampers for the engine-extension subsystem had two major
development problems of interest. The first problem was caused by the high fluid-
pressure shock occurring just after the ion engines pass through the mid-point of
the arc prescribed by the center of the unfolding engines. At this mid-point, the hy-
draulic-damper cylinders have just completed the first half of the total stroke and
are about to reverse and start the second half of the stroke. It was found, by analyses
which were later substantiated by tests, that at the beginning of the second half of the
stroke, a high-pressure shock with peak values close to 1000 psi was developed. This
shock caused the damper diaphragms to rupture during two spin tests. This problem
was solved by changing the diaphragm fabric material from nylon to the stronger
dacron and modifying the valving in the hydraulic subsystem to reduce peak pressure.

The other development problem worthy of note is that of the free play in the hydraulic
subsystem which would develop after long periods of shelf life. Qualified hydraulic-
damper subsystems initially having no free play* were found to have as much as 0.25
inch of free play after the subsystem had been placed on a storage shelf for about three
months. There was no evidence of any leakage anywhere in the subsystem; however,
comparative weighings of a subsystem with free play and a subsystem completely
filled (no free play) indicated that the latter was heavier. The weight difference
corresponded closely to a calculated value which was based on the volume of fluid

ior ine iwo subsystems, thus i1ndicating loss of fluid in the subsystem. A series of
tests were then performed to determine the cause or causes of fluid loss. Helium leak tests
were performed, but no leakage was detected. Specific gravity checks indicated some
loss of water content in the hydraulic fluid from the subsystem having the free play.
Further investigation disclosed that the elastomer material (fluorinated silicone) of
the diaphragms is somewhat permeable, allowing a slight amount of fluid to be lost.
During over-extended storage periods, the amount of fluid lost becomes significant.
Tests run on the T-1B system have shown that no air enters the subsystem as the
original volume of fluid decreases.

The following corrective actions were taken:

® Additions to the hydraulic subsystem were made to allow each of the three
pairs of chambers to be recharged from a common fitting at any time. Dis-
assembly of the hydraulic subsystem, or removal of any components from the
spacecraft, would not be required for the charging operation.

¢ The subsystem would be completely filled under pressures from 40 to 50 psig
during initial assembly.

*Free relative movement between the piston and the cylinder of any one hydraulic
damper while the piston and cylinder of the two remaining dampers are held stationary.
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e Distilled water would be used, eliminating from the fluid many of the unknown
impurities normally found in tap water. The possibility of introducing dis-
solved air into the subsystem is also reduced through the use of distilled
water.

Hydraulic-damper hardware was then modified to incorporated the design features
necessary for the charging operation.

The release mechanism of the deployment system for the ion engines is connected to
two brackets mounted on the lower flange of the column assembly. Various parts in
this release mechanism yielded during the T-1D vibration tests. The yielding oc-
curred at the holes which hold the retractable pin in the explosive pin puller and the
hinge pin. It was evidently caused by excessive bearing stresses on the brackets
and the associated parts of the release mechanism during the high g-level runs.
The lateral displacement of bracket lugs and their mating clevis links under the
bearing load was large enough to cause binding between the parts of the release
mechanism. Thus, the deployment of the ion engines could be seriously affected.
Even though this did not happen at levels below prototype level, the pertinent parts
of the release mechanism were modified to provide an extra margin of safety. The
modifications, in essence, consisted of the following:

e TFor parts formerly made of 6061-T6 aluminum alloy, the material was
changed to 7075-T6 alloy, resulting in an increase of 50 percent in bearing
yield strength. '

®  Stainless steel (18-8 type) pins were replaced by pins made of hardened
stainless steel (17-4PH), increasing the yield strength by a factor of three; and

e The pin of the explosive pin puller was lengthened slightly to insure that
this pin and the supporting lugs of the brackets mounted on the column were
fully engaged, resulting in increased bearing area, hence decreased bearing
stresses.

These modifications were incorporated in the T-1B-3 model which subsequently passed
first the prototype vibration tests and then the spin test.

9. Ground Plane

The antenna ground plane is formed by 24 spring wires each 0. 042 inches indiameter.
These wires extend radially outward to an envelope of 46.2 inches diameter. The 24
wires are connected by a stranded wire at a point 3.25 inches from the outer tip of
each wire. The other end or the inner tip of the wire is formed into a short helical
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coil spring. The coiled end of each wire is inserted into the radially deep annular
groove in the lower ring assembly, and the 24 wires are initially stowed in this
groove. The inner tip of the ground-plane wire is attached to the lower ring by
installing a spring pin through the coiled end of the wire and into the matching holes
in the lower-ring assembly. The wires are stowed by wrapping them progressively
in the groove, a portion of wire length at a time, until the entire length of each
wire is tightly stored in the annular groove (See Figure II-11). A hoop clamp is then
used to retain the wires in the groove, which are now under the stress and strain as
a result of the wrapping. With the helical coil at the point of attachment to the lower
ring, the torsional strain of the coil makes the wrapping of the wire possible with-
out overstress. A packaging procedure for the ground plane wires is specified in
Reference II-9.

Deployment of the ground plane occurs after the engines are unfolded and is triggered
by the same signal that blows loose the door to the cesium-contact-engine pod.

Upon firing of an explosive pin puller, the hoop clamp is disconnected and dislodged
from the lower ring assembly under the combined effects of the strain energy of the
wrapped wires and its own centrifugal force. The ground plane wires likewise spring
out from the storage groove and form a lateral plane to shape the antenna pattern.
(Refer to paragraph III-D. 7.)

10. Detuning Wing

The detuning wing is a piece of 6061-T6 aluminum tubing of 0.250 inch, O.D., by
0.035 inch, wall thickness, bent into a modified "U'" shape of three-dimensional
bends. Its developed length is approximately 45 inches, with the semi-circular part
having a mean radius of about 11 inches. It is attached to the outer edge of the baseplate
by means of small hinges riveted to the open ends of the "U." Two nearly diametrically
opposite detuning wings are used in the spacecraft located approximately 90 degrees
from the ion engines. During launch, the wings are pendant beneath the baseplate.

After the heat shield is jettisoned and spin-up of fourth-stage rocket and spacecraft

Figure II-11. Antenna Ground Plane Wires Shown Being Stowed in the Lower Ring
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is accomplished, the wings are free to move outward, by the action of centrigual
forces, to the horizontal position where they function as part of the antenna subsystem.
A urethane bushing was incorporated in the hinge design to reduce the bending stresses
in the wing upon contact of the wing hinge stops with the baseplate.

11. Antenna Mounts and Clamp Deflectors

a. General

The antenna mount, machined from 6061 aluminum alloy, serves a two-fold
purpose: first, it provides mounting for the antenna whips; and, second, it forms a
part of the deflector system which protects the spacecraft during fourth-stage vehicle
separation. There are four antenna mounts for the eight whips in the antenna array.
Teflon inserts serve to protect the two antenna whips on each mount. There are
three different pairs of 6061 aluminum clamp deflectors (five pairs total). Three
pairs of clamp deflectors are bolted to the pads on the lower ring; the remaining two
pairs of deflectors are riveted to the protruding flange on the lower ring. The de-
flectors are placed around the periphery of the lower portion of the lower-ring as-
sembly to shield the components below the baseplate from the separating clamp
parts that are jettisoned during fourth-stage vehicle separation.

b. Development

Three separation tests were conducted to determine, among other things,
the adequacy of the clamp deflector design. The first tests were conducted on July 2,
1962. The separation tests were performed on a table rotating at 180 rpm with the
two halves of the separation system clamped together. It was noted that during
separation the short antennas mounted closest to the explosive nut on the separation
clamp were bent outwards slightly (about 1 inch) at the tip. As a result, an extra
deflecting surface was added on the bottom of the antenna mount. The additional
deflector was made of aluminum and was riveted to the original antenna mount. The
modified deflector system was subjected to testing on August 21, 1962. The purpose
of the second series of tests was to determine whether the additional deflectors
adequately protected the antennas. The test indicated that the new deflectors did
protect the short antenna and that none of the antennas were hit by the clamp parts.
The third series of tests was performed on March, 1963. The purpose of these tests
was to determine the adequacy of the teflon block which replaced the added aluminum
deflectors tested in the second series of testing. (The aluminum deflectors were inter-
fering with the electrical operation of the whip antennas.) Test results indicated that
the teflon blocks on the antenna mounts functioned satisfactorily.
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12. Miscellaneous Structural Parts

The miscellaneous structural members of significance are the supporting brackets
for the radial accelerometer and the lateral braces for the power supplies of the cesium-
contact and mercury-bombardment engines, the cesium-contact-engine inverter, and
the precession dampers.

There are two supporting brackets for the radial accelerometer. The main bracket to
which the accelerometer is attached by three equally spaced bolts is machined from
aluminum-bar stock. The lower end of the strut is bolted to the lower flange of the
center column assembly; the upper end is connected to a second bracket which, in
turn, is bolted to the column upper flange. An adapter plate with two sets of three
equally spaced holes is placed between the main bracket and the radial accelerometer.

The plate is mounted to the main bracket with screws through one set of holes. The
radial accelerometer is mounted to the second set of holes by means of adjustable
screws. These screws are machined to incorporate a shoulder with a spherical sur-
face on one side so that, during assembly, the shoulder would contact a matching
spherical seat machined in the adapter plate. This arrangement allows the radial
accelerometer to be aligned so that its longitudinal axis passes through the center of
gravity of the spacecraft. To provide a favorable vibration environment for the
radial accelerometer, urethane isolators are used between the accelerometer and
tne adapter piate at each mounting point.

The lateral braces for the cesium-contact-engine power supplies and the precession
dampers are made of 0. 09-inch-thick aluminum plate. The braces for the cesium-
contact-engine inverter and the mercury-bombardment-engine power supplies are ma-
chined; these braces are 0. 060 inches thick and have a flange for mounting. The basic
function of the lateral braces is to restrain these components (which are either radially
remote on the baseplate, stabilized at the center column, or mounted to the baseplate
with a large overhang from the mounting surface) from rocking during vibration. The
restraint is provided by attaching the components to one end of the brace which is
connected to one of the reinforced posts of the distributor frame.

C. THERMAL DESIGN

1. General

The thermal design of the SERT I spacecraft imposed several restrictions related to
component location, mounting, and surface finish. Many component arrangements
were analyzed to arrive at an arrangement which would be compatible with the other
engineering requirements as well as the thermal requirements that had to be satisfied.
Since the electrical power dissipation levels were much higher than normally encoun-
tered in satellite design, many design techniques for maintaining a satisfactory temper-
ature level were investigated. Due to the level of thermal activity, contact resistance
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at the interface between components and the baseplate had to be minimized, and
special surface finishes had to be employed to reduce the external heat loads. Since
the flight profile calledfor a one-hour flight, with portions of the flight within the
Earth's atmosphere, heat inputs due to aerodynamic heating during ascent and coast
flight were investigated. Also studied were the need for ground cooling and the prob-
lem of electrical breakdown due to outgassing of materials.

2. Design Discussion

a. Analytical Study

The thermal design criteria established a temperature range of 0°C to 70°C as
the satisfactory operational range of the spacecraft components. The exceptions to this
temperature range of operation were the main battery (15°C to 49 °C) and the command
subsystem (0 °C to 60 °C). Each component would be activated for a minimum duration
of a half hour and a maximum of an hour at full power.

Since the component locations and power levels were uncertain at the start of the SERT
program, a simplified approach to the thermal analysis was taken. The thermal inertia
and power dissipation level of each component was calculated for several different
locations until an optimum component thermal configuration was obtained. Having fixed
the component location (Figure II-2) and power level, a more detailed analysis was
required to determine the heat transfer between components and the need for placing
additional heat sinks in the telemetry equipment.

A digital computer program was prepared to determine the transient heat transfer be-
tween components. Also accounted for within the program was the heat input due to
solar energy, albedo, and Earth-emitted radiation. The program also included the
radiation and conduction coupling between components.

The mathematical expression used in the digital computer program is as follows:

dT,
1
Micp_ 50 - T [Ap‘ @, P, (6) +A @ Scos Bi(a)] vA €, u(9)
1 1 1 1
2 4 4 2 4
+Q(0) - 2 R,.o(T, -T,) - K (T, —T,)—Ap €,0T, (I1-1)
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where

Mi is the mass of the i-th body,
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is the specific heat of the i-th body,

is the temperature of i-th body,

is the temperature of j-th body,

is time,

is a conirol set (1.0 during day operation and zero during night
y

operation),

is the area receiving albedo,

is solar absorptivity,

is albedo (variable with time),

is the area receiving solar energy,

is direct solar energy,

is sun angle (variable with time),

is the area receiving earthshine,

is emissivity,

is earthshine (variable with time),

is internal power generation (variable with time),

is the radiative coupling factor,

is the conductive coupling factor,
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- 2
o is the Stefan - Boltzman=nconstant (3.657 x 10 11watts/ in °K4),
and

AR is the area radiating to free space.
i

The radiative coupling factor can be defined in the following manner:

4 4
p=A €0, o@T — T,) (11-2)

Q 1 1-2

1

where

Q1-2 is the radiative coupling factor between bodies 1 and 2,

A1 is the area of the first body,

'3 is some function of the emissivity of both bodies,

o 1-2 is the angle factor from first body to second body,

T 1 is the absolute temperature of first body, and

T2 is the absolute temperature of second body.

The coupling factor from the first body to the second body (Rl 2) is therefore:

= ! -~
Rip=A €0, (r-3)

and the conductive coupling (K 1 2) factor is simply:

k
K127 A M-4)
where
k is the conductivity of the material,
Ac is the conduction area, and
4 is the length of conduction path.
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Equation (II-3) is used to calculate the contact resistance between the SERT baseplate
and the component interface. The thermal conductance due to this contact resistance

replaces the k/ 4 in the above expression, and the component contact area replaces
the Ac term.

The value of the direct solar flux, average albedo, and earthshine inputs for the tran-
sient state were calculated for each surface. The actual power profile of each com-
ponent is included in the analysis.

The increase in compartment temperature due to aerodynamic heating during launch
was computed for launch attitude angles of 85 degrees and 78 degrees. For the
85-degree launch-attitude angle, the spacecraft temperature increases 8.5°C before
second-stage burnout. Upon ejection of the heat shield, the spacecraft decreases 4°C

at fourth-stage burnout; this leaves a net increase of 4.5°C during launch. For the 78-
degree launch-attitude angle, the net increase is 45°C; this is due to direct aerodynamic
heating on the components when the heat shield is ejected at this lower trajectory angle.
However, the launch attitude angle of 85 degrees was selected to avoid any severe
problems.

Prelaunch cooling of the entire spacecraft to an initial temperature of 10°C was sug-
gested. This initial condition maintains all components below the 70°C temperature
limit and removes the need for placing additional heat sinks in the telemetry equipment.

In the above paragraphs, only the technique of predicting component temperature was
discussed. However, the surface properties of the components directly affects the
component operating temperature.

Since the SERT spacecraft is a high-power dissipating system, a coating that would
allow maximum thermal radiation and minimum thermal absorption was selected.
The possibility of arcing due to the presence of the 5000-volt potential (above ground)
imposed additional restrictions on the type of materials used within the SERT com-
ponents as well as those used for surface coatings.

To comply with this additional restriction, materials having low-outgassing properties
were selected. An analysis was made to determine the arc-over problem due to out-
gassing of the Tilecote surface material. Using the vacuum test data given in Reference
II-13, it was shown that, for an assumed weight-loss rate of epoxy paint (component
surface coating) of 5 percent per hour, the computed vapor pressure of 2.1 x 10-4 mm
Hg, at a point adjacent to the component surface, was well below the pressure level
(4.6 x 10-3mm Hg) required to produce an arc across a 100-mm gap at 5000-volt
potential. Since the entire engine testing is performed above a 200-mile altitude
(ambient pressure of 10-8mm Hg), the assumption that the computed vapor pressure
would exist between points of high potential (engine and components) produces the most
conservative estimate of arc-over probability.
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b. Test Program

To augment the study of arc-over due to outgassing at low pressure, a series
of tests were conducted at appropriately low pressures (10~5 mm Hg) to determine if
electrical breakdown on the SERT spacecraft would occur. These tests simply employed
two brass electrodes separated by a known distance. The potential difference between
the two electrodes was varied and the breakdown voltage (if breakdown did occur) was
noted. Test results indicated that at a pressure of 10~ mm Hg, a potential difference
of 30,000 volts across an 0. 3 inch gap did not result in breakdown. It then follows that
5000 volts across the gap of 0. 0625 inches (minimum internal distance between sur-
faces of the mercury-bombardment-engine) will not break down at 1079 mm Hg. A de-
tailed discussion of the test is presented in Reference II-21.

In conjunction with the digital computer thermal analysis program, a test program

was initiated to check the temperature of the high-power-dissipating components.
Thermal models of the telemetry equipment, main battery, and mercury-bombardment-
engine converter were fabricated and assembled to a simulated baseplate as the flight
hardware would appear in the actual spacecraft. These tests were performed to cor-
roborate the temperature predicted by the computer program and to indicate the extent
of conduction coupling and contact resistance between components.

The tests were conducted with the components in a glass bell jar evacuated to 5 x 10-5
mm Hg; the walls of the bell jar were at room temperature. Each component was
operated at the duty cycle that it would experience in actual flight. Since the chamber
walls were not cooled, the environment that the spacecraft was subjected to did not
simulate the actual conditions. However, the temperature rise of each component
would be similar to that which occurs in the actual environment.

Results of the test program indicated that the components would not exceed the 70°C
maximum temperature limit. A few of the component arrangements tested did exceed
this limit; however, these arrangements were not incorporated in the final component
configuration. A complete discussion of results and test data is given in Reference
II-22,

D. MECHANICAL INTEGRATION

The primary purpose of the mechanical integration task was to ensure the
mechanical integrity of the spacecraft. This tagk comprised the design of the
mechanical arrangement of the assemblies, subassemblies, and the components
within the spacecraft; the design of fixtures and jigs, where necessary, for proper
weight and balance; and the coordination and incorporation of all mechanical mounting
changes in the spacecraft. Mechanical integration procedures were evolved as
needed to provide maximum flexibility for incorporating design changes or modifica-
tions throughout the course of the program without detrimentally affecting the overall
program schedule.
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1.  Component Arrangement

The arrangement of components on the spacecraft structure was necessarily a
compromise among a number of design factors. However, among these, the require-
ments set by last-stage rocket dispersion limits for static balance (50 ounce-inches)
and dynamic balance (200 ounce-inches?) in the engines-folded condition were para-
mount and were to be met with a minimum of balance weights. The other design
considerations were as follows (in order of importance):

2. Engine Clearance

The component arrangement necessarily respected the volume required for
the uninhibited movement of the ion engines from their folded to extended positions.

b. Thermal

High-power-dissipating components had to be mounted at the baseplate
periphery with as little obstruction to space as possible. Furthermore, these
components were not to be located adjacent to each other. For example, cesium-
contact-engine subsystem components were kept as far as possible from mercury-
bombardment-engine subsystem components. Gond thermal-conduction paths weorc
also maintained between heat-generating and heat-absorbing components and the
spacecraft baseplate. Note particularly that only non-dissipating components
(programmer, power-switching unit, signal conditioner) are located on the distributor
frame. The command subsystem was specifically designed for location within the
column structure where a temperature environment between 0°C and +60°C could
be guaranteed.

¢c. Structural

It was necessary not only to provide as much equalization of the load across
the total baseplate surface as possible, but also to arrange the components so that the
load from the mounting points could readily be transferred through the baseplate skin
to the ribs. In the case of the underside components, it was necessary to place the
mounting feet such as to avoid unduly loading a particular rib. Load-transferring
blocks were often used to provide the necessary equalization.

d. Accessibility
Often, the large number of components packaged in the small space provided

by the spacecraft would make accessibility extremely difficult; however, s pecial
consideration was given to the batteries, all component connectors, measurement
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points, and adjustment points. Wherever possible, access to mounting hardware was
arranged so that a minimum of special tooling would be required.

e. Harnessing

While it was desirable, for mechanical integrity, that the harness be fastened
rigidly to the structure wherever possible, the shortage of available baseplate area
often made it necessary to run the harness across components, using existing bracing
or adding special bracing wherever possible. Assembly and disassembly times were
greatly affected by the large number of constraints created by the harness.

Of particular note in the final configuration is the location of a number of components
atop the batteries. Space availability was at such a premium that this arrangement
became necessary. The battery covers utilized were specially designed by RCA to
provide the required component mountings, structural integrity, and satisfactory
thermal conductivity.

Individual component layouts were prepared for each of the three major configura-
tions evolved during the program. Accompanying each layout was a computation
report in which the weight and balance was validated, based upon the latest com-
ponent information (e.g., size and weight). The design process involved a series
of sample layouts and computations during which the effect of component movement
on both the layout and balance would be analyzed in order to select an arrangement
that would minimize balance weight while still satisfying all of the design considera-
tions. The weight, balance, and moment of inertia computations for the final con-
figuration are presented in Appendix A.

2. Component Mounting

Various methods of locating and accurately drilling component mounting holes
were considered. The use of a metal drilling template was discounted because it was
not readily adaptable to subsequent relocation of components and excessive time was
required to locate new hole centers using coordinate dimensioning. The laying out
of the component arrangement on each baseplate using the surface-plate and height-
gage method was abandoned because the time involved was prohibitive; in addition,
this method involved the scoring of the baseplate with a scriber, which, in turn,
increases the probability of failures under vibration due to the high stress concentra-
tion at the scribed marks.

To locate holes on the topside of the baseplate, the final decision was to use Mylar
film to make a "primary master" layout of the baseplate and component arrange-
ment; Mylar has excellent dimensional stability and any layout changes can easily
be incorporated. The ""primary master" is never used; instead, a working
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""secondary master' was photographically reproduced. The "secondary master"
was taped onto the surface of the baseplate, and the hole locations were transferred
from the "secondary master" to the baseplate with a center punch.

To prevent "hole drift'" during drilling, a drill bar and slip-drill bushings were used.
A trammel point with the center-punch mark as a guide was used to locate the drill
bar. The drill bar was then clamped to the baseplate and the desired size of the hole
obtained by stepwise increase in the size of the slip-drill bushings used.

For the underside of the baseplate, the mounting of components presented similar
problems of location plus the added complication of a conical, ribbed surface. The
design of the baseplate was predicated on the loads being distributed to at least two
of its ribs for each point of attachment. The mounting accuracy required to insure
load distribution over a large area without inducing preload stresses in the ribs
dictated the use of machined aluminum blocks; sheet metal attachments would be
unacceptable. These aluminum blocks were machined to within 0. 005 inch of the
final dimension and then hand filed and fitted to the exact rib spacing. The criteria
for fitting these blocks was established as a minimum of 75 percent of the surfaces
in contact and the area of contact so distributed that no less than 40 percent of the
contact is obtained in one half of the total block area. Most blocks were designed
and fitted in such a manner that the loads were distributed among two ribs and the
baseplate surface; lightly loaded blocks were secured to one rib and the baseplate
suriace. In order to obtain equal load distribution on the mounting blocks for the
heavier components, these blocks were made 0.100 inch longer and were finish
machined after installation on the baseplate. This generated a single plane for
component mounting. Special jigs and templates were used to locate component
mounting holes in these blocks.

3.  Hardware

The initial selection of hardware comprised mainly socket-head cap screws made
from Type-304 stainless steel and thin hexagonal locknuts (of the internal-external
wrenching type) made from Type-A286 corrosion-resistant steel. As the component
arrangement became more complex and the amount of available mounting space
lessened, the mounting hardware became more inaccessible; this problem was
solved by repiacing the thin hexagonal locknuts with either two-lug miniature floating
anchor nuts (NAS 1068) or corner anchor nuts (NAS 698).

Another problem that evolved was the tendency for the nut to behave as a die which
would cut the threads of the bolt when the bolt was removed during disassembly; the
resulting chips from the bolt caused the bolt to "freeze" in the nut. (Locking is
accomplished by distorting the back of the threaded section of the nut.) The problem
was solved by changing the specified bolt material from the softer stainless steel to
a much harder alloy steel, thereby negating the die-cutting tendency of the nut.
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Vibration testing revealed that bolts threaded into tapped holes, as opposed to anchor
nuts, had a tendency to loosen, even though they were installed with split lockwashers
and "locktite' applied to the threads. This was particularly true where the bolt load-
ing was primarily a tension loading. To remedy this situation, lockwire was in-
stalled in all bolts not assembled into locking-type nuts.

4. Assembly Techniques

Consistent with the adopted mechanical integration philosophy of providing maxi-
mum flexibility, the simple assembly techniques employed were developed as the
project progressed and as the need arose. To alleviate the difficulties encountered
with installing lockwire in certain cramped locations, the bottom side of the spacecraft
baseplate was partially assembled before the top. In assembling the top side of the
baseplate, it was advantageous to start from the center and work toward the periphery.
As each mounting bolt was installed, it was torqued to its specified limit and marked
with a small dot of red dye. The dye was applied in such a manner that any loosening
of the bolt was immediately apparent. The torque values for most applications were

as follows:
Bolt Size Torque Value (in. -1b.)
No. 6 14
No. 8 _ 25
No. 10 42
1/4 in. 101

These values were established in consultations with the Structural Analysis Group at
RCA and were set at approximately 90 percent of the mean tensile yield stress of the
bolt using the thread root-area as the design criteria. There were, of course, special
torque requirements for mounting bolts whose application deviated from the norm.

As an added precaution against bolt fatigue or surface galling, mounting bolts that
had been installed and then removed for any reason were discarded; new bolts were
used for re-installation. This procedure was also applied to non-captive lock-nuts,
but, as an exception, the aluminum flat washers were not replaced unless they showed
excessive deformation or wear.

5. Dynamic Balancing and Inertia Measurement

Dynamic and static balancing of the SERT flight spacecraft (T-3) was performed
on a vertical two-plane balance machine; a photograph of the T-3 spacecraft on the
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machine is shown in Figure II-12. The balancing operation was performed in two
separate phases:

a. Engines Folded

In this condition, the spacecraft was dynamically and statically balanced to
accuracies of 158.7 ounce-inches and 36. 9 ounce-inches, respectively and permanent
balance weights were installed.

b. Engines Extended

Subsequent to the engines-folded balancing, the static and dynamic un-
balance of the spacecraft created by extension of the engines were determined by
the addition of temporary balance weights. The results showed that the reorienta-
tion of the spin axis due to engine extension was less than 1 degree.

Detailed descriptions of the measurements and the results are presented in Refer-
ences II-15 and II-16.

Figure II-12. SERT T-3 Spacecraft on the Balance Machine
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Moments of inertia were measured using the bifilar pendulum facility located at
AED (originallydeveloped for the NASA Relay* program). The following moment
of inertia measurements were made:

(1) Spin Axis, Engines Folded.
(2) Spin Axis, Engines Extended.

(83) Three Transverse Axes (45 degrees apart), Engines Extended.

For the measurements of (1) and (2), the spacecraft was mounted in an inverted
position with the base ring fastened to a special adapter (shown in Figure II-13).
Before installing the spacecraft on the adapter, a standard, approximating the size
and weight of the spacecraft, was used to make calibration measurements. As
shown in Reference II-17, a measurement accuracy of better than 0.2 percent is
possible.

The spacecraft was then mounted in a special box frame for the transverse-axis
measurements. As with the spin-axis measurements, a calibration using the
standard was also performed. Figure II-14 shows the standard and box frame
installed on the pendulum.

|
i

Figure II-13. Special Adapter for Spin-Axis Moment-of-Inertia Measurements

*The Relay Satellite was designed and built by the Astro-Electronics Division of RCA
for NASA under Contract No. NAS 5-1272.

II-34




Figure II-14. Box Frame and Standard for
Transverse-Axis Moment-of-Inertia Measurements

The results of the moment of inertia measurements are presented in References
II-18, II-19 and II-20. The following is given in summary:

2
I . 10. 41 slug-ft
(spin axis)

. . 33 slug-ft2
I(’cransverse) (max.) 8 siug

_ft2
I(tranSVerse) (min. ) 7.36 slug-ft

The axis of maximum transverse inertia is located 82 degrees counterclockwise

from the mercury-bombardment-engine location (+X) as viewed from above the
baseplate.
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E. HANDLING PROCEDURES
1. General

The fully assembled SERT spacecraft was difficult to handle not only because
of its bulkiness and considerable weight but also because the areas for grasping the
spacecraft were severely restricted by its complexity. Mostly, lifting of the space-
craft was accomplished by hand-operated chain hoists of one-half-ton capacity. On
some occasions,however, electrically operated, overhead traveling cranes were used.

2. Lifting Sling

The sling used for lifting the spacecraft during various stages of its integration
and test cycle consisted of three felt-covered aluminum clamps secured to the base-
plate outer flange at equally spaced intervals. Each clamp had a length of one-
quarter-inch-diameter wire rope spliced to a standard eye bolt which screwed into
the clamp body. The other end of these wire ropes was spliced to a lifting ring of
suitable size to fit over the hook of the chain hoist. Approximately mid-way be-
tween the end points of the wire ropes a spreader ring was installed to insure that
these ropes did not damage the spacecraft components. The entire assembly is
shown in Figure II-15.

« ;()Rl)s | .
FconT S inER - RETM

ThEsTROY

Figure II-15. SERT Spacecraft, Suspended by the Lifting Sling,
Being Placed in the Shipping Container




3. Workstends

Most of the integration and some of the testing of the spacecraft was performed
with the spacecraft mounted on a modification of a standard spacecraft workstand
used by RCA. This modification affected the way in which the spacecraft was mounted;
three different arrangements were required:

® One arrangement utilized a ring with a hole pattern and centering counterbore
suitable for mating with the lower surface of the column assembly.

e Another arrangement consisted of a ring simulating one-half of the rocket

mounting adapter, thus allowing the spacecraft to be mounted using the
separation clamps.

® The third arrangement used a large flat plate whose outside diameter was
slightly smaller than the inside diameter of the lip on the base of the
separation mechanism. This plate was drilled to simulate the hole pattern
of the separation mechanism mounting.

4. Turing Fixture

This fixwurc was designed and uced for inverting the integrated snacecraft before
performing the inertia measurements. The fixture consisted of three baseplate
clamps similar to those on the lifting sling. Each clamp supported a solid alumi-
num rod which extended both above and below the spacecraft; these legs were braced,
at top and bottom, with triangular-shaped brackets. The clamps and legs were
assembled to the spacecraft and enclosed it like a cage. The entire assembly could
then be placed on the floor and carefully tipped to the proper position for installa-
tion on the bifilar pendulum for inertia measurement. The process is reversed to
replace the spacecraft on the workstand.

5. Layout and Drill Stand

The layout and drill stand, which was used to hold the baseplate during location
and drilling of mounting holes, consisted of a triangular base with three upright
posts, cross-braced to provide the required stability. The upright posts were
notched and lined with felt to provide a nest for the baseplate. Felt-covered clamps
were used to secure the baseplate to the posts and to prevent it from shifting or
tipping. This stand was fabricated of wood and outfitted with casters for mobility.
It supported the baseplates with either the top side or bottom side up and readily
allowed the installation of the Mylar drill template (Paragraph II-D. 2).
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SECTION 11l
SPACECRAFT ELECTRICAL DESIGN

A. GENERAL

Presented in Section I were the general requirements of the SERT I electrical
system and the major subsystems necessary to implement these requirements. This
section is devoted to an expansion of the system discussion and to the detailed
description of each subsystem, including its concept, operation, development, and
component hardware. The descriptive material presented for those subsystems not
developed under RCA's responsibility is necessarily brief but is included for com-
pleteness.

Figure ITI-1 is a functional block diagram of the SERT I electrical system. The major
subsystems are as follows:

® Mercury-Bombardment-Engine Subsystem,
e Cesium-Contact-Engine Subsystem,

o Telecommunications Subsystem,

e Command and Control Subsystem,

e Power Subsystem, and

e Sensory Subsystem.

Power for the mercury-bombardment-engine subsystem is provided by the power
subsystem as inputs to the ac and dc power supplies, which convert the basic 28
and 56 volts into the various potentials needed for engine operation. The neutralizer
voltage control unit is controlled by the programmer of the command and control
subsystem. Subsystem performance data is routed, as dc and ac voltages, to the
signal conditioner of the telecommunications subsystem. The ion-beam probe and
mechanism and the beam-probe signal conditioner, although part of the sensory
subsystem, are operated in conjunction with the mercury-bombardment engine.

Power for the cesium-contact-engine subsystem is provided directly to the inverter
where it is conditioned and applied to the remaining subsystem components. The
control box provides timed signals to implement parameter variations. Subsystem
performance data is routed through the spacecraft harness to the signal conditioner
of the telecommunications subsystem.




As shown in Figure III-1, there are two separate and redundant active-element links

in the telecommunications subsystem, each link consisting of a commutator, sub-

carrier oscillator package, transmitter, converter, and power amplifier. Sub-

system power, although not specifically shown, is provided completely by the 28-

volt telemetry battery within the power subsystem. Power regulation and conversion,

as required, is performed independently by each of the various components, with |
the exception of the telemetry transmitters and rf power amplifiers which receive |
regulated power from the dc-to-dc converters. Control inputs are not necessary since

the subsystem operates in one mode through the entire flight. Data inputs from the

other subsystems are provided at several points: at the signal conditioners, for the

commutated data links; and directly into the subcarrier oscillators, for the real-time

links. The telecommunications subsystem output is the modulated rf power from

the SERT transmitting antenna. As shown in Figure III-1, the receiving antenna

signal is fed into the coupling network before it reaches the command and control

subsystem.

Allocations of the various data to the 86 commutated data channels were established
by NASA in conjunction with the major subcontractors to provide some redundant
data in each of the communications links. Specifically, 12 critical ion-engine para-
meters were selected for redundant transmission. Channel allocations adopted for
the mission are listed in Appendix B.

The command and control subsystem performs the in-flight programming and control ¢
function of the spacecraft. In general, control interfaces with the other subsystems

are in the form of relay closures. This type of interface was selected early in the

program because of its basic simplicity and because it permitted separation of sub-

system design details. Power for the subsystem is provided from the 28-volt telem-

etry battery.

The power subsystem was designed to provide power to the power-switching unit
either from the spacecraft batteries (in flight) or from an external power supply
(during test). Control is provided from the command and control subsystem,
although external control during testing is provided through the ''flyaway umbilical."
The power-switching unit also provides state and power information to both the
telecommunications subsystem and to the ground test complex. The squib-firing
functions for engine unfolding, ground-plane release, precession damper uncage,
and spacecraft separation are also contained within the power-switching unit,
although control signals are provided by the programmer. A barometric switch is
in series with these functions to prevent squib firing before lift-off.

The sensory subsystem provides spin-rate and mercury-bombardment-engine data
to the telecommunication subsystem. Power from the 28-volt telemetry battery
(through the power-switching unit) is provided continuously to all sensors except
the beam probe which operates only when the mercury-bombardment-engine is
activated.
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B. MERCURY-BOMBARDMENT-ENGINE SUBSYSTEM

1. Description

| The heart of this subsystem is the ion engine (Figure III-2) which operates on the
electron-bombardment ionization principle. This engine has a self-contained fuel sup-
ply and is capable of producing thrust upon the application of electrical power. The
engine, its power supplies, and power-control equipment were designed and built by
the NASA Lewis Research Center. In response to NASA specification RCA developed
the neutralizer-voltage control unit (NVCU) which is used to aid in studying the effects
of variations in neutralizer voltage on engine operation. The NVCU is discussed, in
detail, in paragraph II-B.2. The other components are not discussed in detail; how-
ever, for completeness, a brief description is given in the paragraphs that follow.

a. DC Power Supply

This component, which contains solid-state circuitry throughout, uses the
; 28~ and 56-volt dc power from the power subsystem to generate the high dc potentials |
needed for engine operation. The 56-volt power is converted into ac by an inverter,
| e and special insulated transformers are used to step-up this voltage to levels which |
‘ can then be rectified and filtered to provide the required high dc potentials. In com- |
bination with the ac power supply, this unit contains overload circuits designed to
protect it against shorting or arcing at the outputs.

b. AC Power Supply

This unit converts spacecraft primary power into high ac voltages which are
applied to the engine boiler and the cathode heater.

c. Magnetic Field Power Supply (Battery)

This battery provides power to the engine magnetic field coils. A special
fiber-glass case isolates the battery, which is at the high dc potential of the dc power
supply, from ground. The battery is of the zinc silver-oxide type discussed further
in paragraph III-F; it is rated at 6 volts(nominal), 20 amperes, and 12 ampere-hours.

d. Neutralizer Power Supply (Battery)

This battery is the power source for the engine neutralizer filament. As
with the magnetic field battery, this battery is fiber-glass-cased and can be isolated
above ground at high potentials. The two batteries are identical in external appear-
ance. This battery is rated at 10 volts (nominal), 20 amperes, and 12 ampere-hours.




Figure III-2. Mercury-Bombardment Ion Engine

2. Nevutralizer Voltage Control Unit (NVCU)
a. General

The mercury-bombardment-engine neutralizer is a heated filament, placed in the
ion-engine exhaust, which serves to neutralize the ion beam by injecting electrons.
The neutralizer-voltage controlunit (NVCU) is an electromechanical device which, on
command, varies the resistance between this filament and spacecraft ground along the
path of ion-beam neutralization current, thus varying the neutralizer potential. During
most of the engine operation, the NVCU remains shorted, allowing only the voltage
necessary for neutralization-current measurementto be developed. When, for ex-
perimental purposes, the neutralizer potential is to be varied, the onboard programmer
directs the ordered sequencing of resistances; two such sequences are performed
during flight.

b. Functional Description

Within the NVCU, resistances are selected by relays which are controlled
by a pulse-operated stepping switch. Initially, the resistance of the NVCU is 13
ohms: during sequencing, this resistance is increased in five 800-ohm steps to
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4000 ohms. Since the anticipated neutralizer current is to be constant at 300 milli-
amperes, the voltages developed at this filament range from approximately 4 volts
to 1200 volts. A simplified schematic diagram of the circuit designed to accomplish
this switching is shown in Figure III-3. This circuit is divided into two parts: the
control circuit and the switching circuit.

The control circuit consists of a 12-contact stepping switch and an array of diodes.

At each position of the switch, 28-vde power is applied to the switching circuit
through one or more of the diodes. In the switching circuit, the outputs of
these diodes are applied to one or more of the three relays which short various por-
tions of a resistive divider network to produce the desired resistances. Because of
the high-voltages produced in this circuit, high-voltage relays and wiring and high-
power resistors are used.

The NVCU also provides a prelaunch signal through the umbilical confirming that

the stepping switch is in position one. Position one is the start of the sequence and
corresponds to that state in which all three high-voltage relays are energized leaving
a total resistance of 13 ohms in the neutralizer circuit.

For testing and preflight checkout, the unit has test points to allow monitoring of
the position of the stepping switch, and it also has provisions for externally control-
ling the stepping switch. In addition, the NVCU provides two outputs to the telecom-
munications subsystem; these outputs, representing neutralizer voltage and current,
are telemetered to the ground station throughout the entire mercury-bombardment-
engine operating cycle.

The power resistors (R1, R2, and R3) were selected for the largest physical size to
fit the available space so that no resistor would exceed the maximum temperature
rating of 300°C during the two pre-established identical sequences of resistor
switching. Resistors R4 and R5 were more conservatively rated since little vol-
ume and space was required for the power dissipated.

Cc. Mechanical Description

The NVCU, mounted physically separate from the mercury-bombardment-
engine subsystem, is 11.75 inches long, 3 inches wide, and 3.75 inches high; it
weighs three pounds (Figure III-4). All of the electrical components in this unit are
mounted on the 11.75- and 3. 75-inch faces, and the unit is mounted to the spacecraft
distributor frame along the 3- and 3. 75-inch faces.

d. Development

In the development of the NVCU, two problems were encountered: (1) the
selection of the stepping switches and (2) the selection of the high-power resistors.
Extensive testing programs were required before the final selections were made.
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Figure III-4. Neutralizer Voltage Control Unit

During the stepping switch development, the design of a solid-state switch as well as
the application of three mechanical switches available in the industry were considered.
The former approach was abandoned after investigations of mechanical switches showed
them to have greater noise immunity and simpler development requirements. After an
extensive evaluation program, which included much environmental testing, a switch
designed to meet the special environmental requirements, was selected.

The major problem in the development of the high-power resistors involved high-volt-
age breakdown during vacuum-testing under operating conditions. In order to meet the
high power requirement, the resistors were designed with the resistive element wound
on a grooved ceramic core and totally enclosed within a cast-metal heat sink,

During vacuum testing, the air entrapped in the grooves between the resistive winding
and the metal heat sink would outgas producing critical pressures within the groove
cavities, setting up the conditions for electrical breakdown (arcing). These break-
downs would generally occur after one or more hours exposure to vacuum. The prob-
lem was solved by potting the ends of the resistors with R.T.V. which sealed the joint
between the ceramic former and heat sink thus preventing the escape of entrapped air.
The flexible R.T.V. potting material was used to prevent cracking due to differential
expansions caused by the heating and cooling of the resistor during its duty cycle. At

least 9 hours of reliable operation was achieved during vacuum testing on several
resistors.




A further modification to the unit resulted from operational tests with the mercury-
bombardment engine. This modification required separation of the high- and low-
voltage inputs into two connectors.

C. CESIUM-CONTACT-ENGINE SUBSYSTEM

Essentially, the requirements for this subsystem are the same as those for the
mercury-bombardment-engine subsystem: to produce thrust when power is applied.
A photo of the cesium-contact engine is shown in Figure III-5. The design of this
subsystem and its components, however, is quite different. Since none of this sub-
system was RCA's responsibility, a detailed description is not given; for complete-
ness, however, a brief description of each of the components follows:

(1) Inverter: This component converts the 56-volt battery power from the power
subsystem to regulated ac; the 28-volt supply provides the power necessary to
operate the inverter. All of the inversion circuits are transistorized.

(2) DC Power Supply: This component accepts the ac voltage from the inverter,
steps it up using transformers, and rectifies it to provide the high dc po-
tentials required for engine operation.

(3) . AC Power Supply: Primarily, this component conditions the ac voltage from
' the inverter power for the cesium-contact-engine heaters. It also provides
many of the auxiliary voltages needed for subsystem operation.

(4) Control Box: This component serves as a subprogrammer for the cesium-
contact engine subsystem, controlling all heater sequencing and experimental
programming. It also contains the overload protection capability for the
.entire subsystem. In addition, the control box provides mounting for the
E-Field sensor.

D. TELECOMMUNICATIONS SUBSYSTEM
1. General

The telecommunications subsystem provides a means of monitoring, conditioning,
and transmitting flight data from the SERT spacecraft. This dataisina format which
can be received and reduced by standard telemetry ground stations and which is par-
ticularly suited to the capabilities of the Wallops Island Launch Station. The entire
system, including ground equipment, is capable of data presentation with an accuracy
of greater than 5 percent.
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Figure III-5. Cesium-Contact Ion Engine

2. Description

The telecommunications subsystem includes all equipment for conditioning, multi-
plexing, and transmitting the experimental data and spacecraft housekeeping (oper-
ating) data. The subsystem has two independent active-element links. In the event
of a failure in either link, sufficient data would be retrieved through the remaining
link to ensure partial mission success. The subsystem block diagram is shown in
Figure III-6,

The signal conditioning equipment converts the data inputs, to be later time-division
multiplexed by the commutators, into dc signals with a dvnamic range of 0 to 5 volts.
In addition, this equipment generates the pedestal reference voltages for the com-
mutators. The signal conditioning equipment is discussed in detail in paragraph
II-D. 3.

Two 45-segment PAM commutators and two subcarrier-oscillator (SCO) packages
compose the multiplexing equipment. Eighty-six channels of ion-engine experimental
data and spacecraft housekeeping data are time-division multiplexed by the commutators
and fed to the SCO packages to modulate the 10. 5-ke subcarriers. Continuous
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Figure ITI-6, Block Diagram of the SERT Telecommunications Subsystem

sun-sensor spin-rate data modulates the 7.35-ke subcarriers, and continuous on-
board-programmer milestone information and command-backup-signal-decoding con-
firmation modulate the 1.7-kc subcarriers. The outputs of the SCO's are summed with
each other and with the low-frequency accelerometer data to frequency modulate the
transmitting equipment. For details, refer to paragraphs III-D. 4 and III-D. 5.

The outputs of the two 10-watt fm transmitters, one operating at 240. 2 megacycles
and the other at 244, 3 megacycles, are first diplexed and then phase shifted to quad-
rature feed four quarter-wavelength antennas which produce a circularly polarized
radiation pattern. Details of the transmitters are given in paragraph II-D, 6; the
antennas are discussed in III-D, 7,

The analytical design of the SERT telecommunications subsystem is summarized
below and is described in detail in Appendix C,

(a) The selection of a multiple-subcarrier, pam-fm-fm system was based upon
the following:

(1) Compatibility with existing Wallops Island facilities,

(2) Simplicity,
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(3) Compatibility with data requirements, and

(4) Minimum equipment development requirements.

Two redundant active links were required to ensure reliable transmission of the ion-
engine-performance data and spin-rate information. Programmer and command-
subsystem status were considered to be of secondary importance; therefore, this
information was not redundant, saving considerable power and weight.

(b) RF bandwidth requirements were based upon the sum of:

(1) Data bandwidth (10.5kc SCO) 22.6 ke
(2) Doppler Shift (at separation) 6.2 ke
(3) Frequency stability (+0.01%) 49 kc

77.8 ke

. A standard receiver i.f. bandwidth of +100-kc was therefore selected.

. (c)

(d

(e)

As detailed in Appendix C, the communications link calculation for (1) a
4000-mile slant range, (2) a selected standard-band frequency of 245me, (3)
a circularly polarized isotropic spacecraft antenna, and (4) a specified
antenna at Wallops Island shows that a 10-watt transmitter will provide

a margin of 15db above fm threshold (without phase-lock loop). This
margin was considered desirable in view of the unknown effects of the ion
beam (Reference III-1).

The 10.5-kc subcarrier was selected on the basis of the commutated data and
bandwidth requirements; the other subcarrier frequencies were selected to be
(1) below 10.5 kc (minimizing bandwidth), (2) compatible with IRIG standards,
and (3) capable of meeting the data-transmission requirements. The sub-
carrier signal-to-noise levels are very satisfactory (greater than 41 db at
receiver threshold) and do not contribute significantly to the system error.

In particular, the error in the 10.5-kc channel is less than 0.33 percent and
less than 2. 2 microseconds in the 7.35-kc link.

Error analyses were performed in the telecommunications subsystem to
verify that data accuracy was better than the required 5 percent (see Appendix
D). The analyses revealed the following:

Channel Error
Commutated channels 3.3 percent (without calibration)
Sun Sensor channels 23 microseconds
Programmer and command channels 3.5 percent (without calibration)
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3. Signal Conditioning
a. General

The SERT signal-conditioning equipment converts the data inputs which are to
be time-division multiplexed into dc signals with a dynamic range of 0 to 5 volts. The
bulk of the conditioning is accomplished within a central unit (signal conditioning box).
Four outlying components — two dc amplifiers, a box containing five ac amplifiers,
and an accelerometer signal conditioner — complement the central unit. A block
diagram is shown in Figure III-7.

Two of the complementary units, the dc amplifiers, convert 0-to 50-millivolt shunt
potentials, representing main-battery and telemetry-battery-current, obtained within
the power-switching unit into voltages within a 0- to 5-volt range. These amplifiers
plug into the central unit, and their outputs are sampled by the commutators.

PSU 0C AMPLIFIER
BATTERY 10.5 KC MIXER
T - - l—s TO TRANSMITTER
CURRENT COMMUTATOR sco NETWORK
MONITORING DC AMPLIFIER
ION ENGINE ONSL')?TNI‘:)'LER ACCELEROMETER
AND SPACECRAFT ¢ . ACCELOMETER SIGNAL
HOUSEKEEPING (CENTRAL CONDITIONER
TELEMETRY DATA UNIT)
BEAM~PROBE
ION-BEAM 10.5KC MIXER ——e YO TRANSMITTER
PROBE SIGNAL COMMUTATOR  [=—o sco NETWORK
CONDITIONER
Figure III-7,

Block Diagram of the Signal Conditioning Equipment

The third complementary unit, the ion-beam-probe signal conditioner, which contains
five ac amplifiers and associated circuitry, converts millivolt-range ac signals, which
are isolated above ground into dc voltages in the 0- to 5-volt range. These ac signals
represent ion-beam current information that is obtained from five hot-wire anemometer
probes which are positioned in the exhaust path of the mercury-bombardment engine.
The ion impingement on the wires results in a corresponding resistance change and a
resultant voltage variation. This voltage variation is transformer coupled to one leg of
an ac bridge. Transformer coupling is used to isolate the signal-conditioning equipment
from any high potentials which may be induced into the sensing circuits by the ion beam.

The signals are amplified, rectified, and fed to the central unit to become five of the
time-division multiplexed data channels.
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The fourth supporting unit, the accelerometer signal conditioner, consists of adjustable
resistive circuit which provides impedance matching between the two accelerometer out-
puts and the mixer circuits in the SCO packages. Since the conditioner outputs directly
modulate the transmitters by way of the mixer, the adjustments serve also to set the
deviation ratio.

The central unit itself contains all of the electronic circuitry required to convert the
remaining data inputs into signals which have an amplitude range of 0 to 5 volts dc.
The time-division multiplexers, or commutators, which are physically attached to
the central unit, sample these signals and feed the resultant wave-train back to the
centiral unit where noise spikes are filtered. The wave-train then modulates the 10. 5~
kc subcarrier oscillators.

b. Signal Conditioner (Central Unit)

The electrical networks in the central unit condition 86 channels of ion-engine
performance and spacecraft housekeeping data: twenty-eight channels for the mercury-
bombardment engine, thirty-five channels for the cesium-contact engine, nine channels
of temperature-level data, six battery-condition channels, five calibration channels, one
channel for confirmation of spacecraft separation and ion engine deployment, and one
channel which indicates the back-up-command mode.

The central unit consists of six component boards, a potentiometer assembly, two
dc-de converters, two dc amplifiers, and the associated harness wiring. The unit is
approximately 11-1/2 x 6-1/4 x 4-1/2 inches and weighs approximately five pounds.
The design and development of the unit was in accordance with the specifications of
RCA Technical Memorandum TM-1105 "SERT Signal Conditioner Data, " (Reference
I1-2).

The unit was developed using solid-state circuitry and resistive dividers, mounted on
plug-in module boards. In this way, specification changes could be readily handled by
module board changes rather than overall assembly changes.

The first central units were designed to mate with the electronic commutators which
were mounted on each of the chassis. Because of difficulties encountered during T-2
system testing at the Lewis Research Center, it became necessary to redesign the cen-
tral unit to accommodate mechanical commutators (paragraph III-D.4). In addition,
the two dc amplifiers, previously located in the power-switching unit, were relocated
on the signal conditioner (paragraph III-D.2). Both of the dc amplifiers were mounted
on one end such that electrical adjustments could be made while the central unit was
installed on the spacecraft. As before, the commutators were mounted on each end of
the chassis.

For simplicity and reliability, the use of passive, purely resistive networks was
emphasized in the design of the central unit. Two types of purely resistive divider
circuits were used to obtain the 0- to 5-volt output: 0 to 30 volts by 6 dividers and
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0 to 6 volts by 5 dividers. In addition, all of the temperature sensing networks
utilized the resistive-change characteristics of the temperature sensors in a purely
resistive network to obtain a 5-volt output for the corresponding lower temperature
limit.

Some of the conditioning requirements dictated the use of several types of active low-
level circuits. These included a 5-to-1 AGC amplifier, high-gain dc amplifiers for
monitoring the cesium-contact-engine beam-probe currents, a rectifier network for the
mercury-bombardment-engine mercury-heater temperature, and negative-bias-voltage
generators. All of these circuits were designed using solid-state circuitry. Reference
III-3 (TM-1103 "SERT Signal Conditioner') provides detailed information as to the
channel-by-channel circuit configurations. Reference IlI-4 (SPO-11, "SERT Signal Con-
ditioner Scale Factors') supplements TM-1103 to provide channel-by-channel scale-

factor information. Several typical signal-conditioning circuits are shown in Figure
III-8.

The introduction of mechanical commutators in place of the solid-state electronic
commutators resulted in some redesign and additional electronic circuitry in the
central unit. The mechanical commutator was chosen by NASA who instructed RCA
to study the incorporation of the device into the telecommunications subsystem. The
results of this study are given in Reference III-5.

The battery-current-monitor dc amplifiers were moved from the power-switching unit
to the top of the central unit in conjunction with the commutator changes. The smaller
volume of the mechanical commutators (compared to the solid-state commutators)
made this change possible. The advantages of such modifications were:

(1) Amplifiers could be changed without disassembly of part of the spacecraft.

(2) Adjustment of the zero set and gain of the dc amplifiers could be ac-
complished with greater ease.

The changes to the central unit resulting from the above modifications were:
(1) Addition of two low-pass filters to protect the input of the dc amplifiers;

(2) Addition of a low-pass filter and level-limiting circuits on the output of
the commutators to protect the 10.5-kec SCO inputs; and

(3) The design and manufacture of a de-dc converter to provide redundant
pedestal voltages for the mechanical commutators.

c. DC Amplifier

The battery-current-monitor dc amplifiers were developed to facilitate
telemetry measurements of the main and telemetry battery currents. Current shunts,
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mounted in the power-switching unit (PSU) and connected in series with the ground
(negative) leads of the two battery systems, provide voltages in the 0- to 50-millivolt
range, which are directly proportional to the current flow. Since the dc amplifier
provides linear operation with a gain of 100 over the entire input range, the output is
in the 0- to 5-volt range required for the telecommunications subsystem.

The amplifiers initially selected for use were subcontracted; these amplifiers passed
the qualification and acceptance test programs only after considerable difficulty.
Among the failures encountered were loss of output, zero off-set, and drift.

During subsequent live ion-engine testing on the prototype spacecraft (T-2) at the
Lewis Research Center further failures occurred. These failures were caused by
high-voltage transients (spikes) which exceeded the allowable levels at the input of
the amplifiers. The transients were caused by high-current surges induced during
ion-engine arcing.

A redesign of the amplifier was then initiated; the two objectives of this redesign were
to (1) incorporate a low-pass filter at the amplifier input and (2) to improve overall
reliability, including the zero-set and drift-stability characteristics. In addition,

the dc amplifiers could now be moved from the PSU to the top of the signal condi-
tioner (central unit), thus providing better access. Throughout the redesign, the
original envelope, method of mounting, and connector and connector-pin arrangements
were maintained.

Specifications for the redesigned amplifiers were sent to twenty-four manufacturers,

and three companies responded. The amplifiers selected passed the qualification and
acceptance test programs without difficulty and were incorporated on the T-1B-3 and

T-3 spacecrafts.

It was found to be impractical to incorporate the input low-pass filters within the
envelope of the amplifier. Therefore, an external filter was built into the signal con-
ditioner (central unit). However, some special input-power filtering was provided
within the amplifiers.

d. Ion-Beam-Probe Signal Conditioner

In the original design of the ion-beam-probe signal conditioner, the fine ion-
beam-probe resistance elements were made of 0.4-mil wire with a resistance range
of 12 to 20 ohms from engine-off to maximum-beam-density conditions. The condi-
tioning circuitry was designed to meet these parameters. During live ion-engine
testing at the Lewis Research Center, it was found that the 0.4-mil wire eroded
too fast when swept through the ion-beam. The wire size was increased to 0.6 mils
which reduced the off-to-full beam resistance to a variation of 5 ohms and a range of
9 to 14 ohms.
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In the original design, the low side of all five transformer secondaries were grounded
and the high sides were connected directly to the input of the ac amplifiers. With the
new resistance wire, the amplifier was not sensitive enough to provide a 0- to 5-volt
telemetry signal. In order to increase the sensitivity, the transformers were rede-
signed and used as inductance legs of five separate ac bridges, and the amplifiers
were now driven by the outputs of these bridges. The gain of each amplifier was in-
creased by reducing the emitter resistance of the input stage from 330 ohms to 27
ohms. The overall sensitivity of the final circuit is 2 volts output for each ohm of
sensor resistance change. A schematic diagram of this circuit is shown in Figure
III-9; a photo of the unit is shown in Figure II1-10.

e. Accelerometer Signal Conditioner

The accelerometer signal conditioner is composed of two simple resistive
matching circuits; each provides impedance matching between an accelerometer out-
put and the telemetry-signal mixer circuits in the SCO package. A 20 kilohm
trimpot provides a voltage level adjustment of each signal. Since the conditioner out-
puts directly modulate the transmitters by way of the mixer, the adjustments serveto
set the deviation ratio. A schematic diagram is shown in Figure III-11.

. The parts are mounted on a fiber-glass board which is mounted to a bracket (Figure

III-12). The bracket bolts to one of the spacecraft baseplate ribs with the trimpot ad-
justing screws exposed.

4. Commutators

a. Functional Description

The commutators provide the means of monitoring 86 channels of spacecraft
performance data. SERT uses two 45 x 2 commutators (one for each transmission
channel) which accept inputs directly from the signal conditioning equipment (para-
graph III-D. 3) to time~division multiplex this data. Data channels 1 and 2 carry
calibration voltages, 3 through 43 performance data, and 44 and 45 sync. The com~
mutator operates at a rate of two frames per second, and the output pulse trains
modulate the 10.5-kc subcarriers in the SCO packages.

b. Development

The initial decision to use electronic solid-state commutators rather than
mechanical devices was made on the basis of reliability. At that time, mechanical
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Figure III-9. Schematic Diagram of the Ion-Beam-Probe Signal Conditioner

Figure III-10. Ion-Beam-Probe Signal Conditioner
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commutators had proven to be unreliable; rework was frequently necessary to cor-
rect the effects of wearout on mechanical parts. Subsequent developments (and im-
provements in the state-of-the-art) in the design of mechanical commutators occurred
during the SERT program.

The electronic commutators were fully solid-state electronic devices which had a
high input impedance, very high frame stability, internal pedestal and sync-pulse
generation, and very high reliability for long term usage. The units passed all the
- qualification and acceptance testing before they were installed on the T-2 space-
craft (prototype).

During vacuum testing of the T-2 prototype at NASA, negative voltage spikes were de-
tected at some of the commutator inputs. These spikes far exceeded the allowable
amplitude of minus 10v to plus 25v, resulting in commutator failure. The spikes were
induced into the telemetry-signal lines by transients resulting from high-voltage arc-
ing at the ion engines. Complete protection of the two electronic commutators would
have involved adding 83 separate low-pass filters at the channel inputs.

NASA directed that the solid-state commutators were to be replaced by mechanical
commutators. The necessary pulse-train pedestal circuitry, spike filtering circuitry,
and buffer circuitry were also added.

The first design included a dc-dec converter to supply a redundant negative dc source,
Zener regulators, and voltage dividers to provide minus 1. 25-volt pedestals for two
commutators, low-pass RC filters for each SCO input and two buffer amplifiers to
provide constant source impedances to the SCO's.

At NASA request, the buffer amplifier was eliminated and voltage-limiter diodes were
added to each commutator output line. The voltage limiters are 1N645 diodes which
are in a reverse-biased condition except when voltage spikes on the SCO input line
exceed plus 6.2 or minus 2 volts. The diodes thus protect the SCO inputs from high
voltage noise pulses arriving along the signal lines. The high-frequency components
of these spikes are reduced by the low-pass filter ahead of the voltage limiters.

The new dc~dc converter is housed in a separate MU-metal shielded container to re-
duce interference. The bridge rectifier and filter for the converter are on the same
circuit board as the low-pass filters and voltage limiters. This board also contains
Zener-diode voltage regulators and resistive dividers which supply the minus 1. 25-
volt pedestal and plus 6.2-volt bias for the positive voltage limiters.

A commutator is mounted at each end of the signal conditioner (central unit). The
mounting arrangement was designed utilizing two aluminum end bells which mate with
the mounting holes that were used for the solid-state commutator. The bottom bell is
large enough to house the commutator and dc-dc converter; the top bell is just large
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enough inside to hold the other commutator. The two battery-current-monitor dc
amplifiers mount externally on the flange alongside the upper bell.

The new circuitry required to supply pedestal voltages to the mechanical commutators
and to protect the SCO inputs from high-voltage noise spikes was added. The trans-
former, switching transistors, and biasing resistors for the redundant negative volt-
age source are located in a MU-metal can mounted in the bottom end bell. This can
reduces noise introduced by the switching spikes from the converter.

The protection circuits are in series with each commutator output line ahead of the
SCO input. The low-pass filter is a simple RC network. The 3-db point for this filter
is about 12 kc. Following this filter are two 1N645 diodes in parallel. One diode is
returned to ground through a 6. 2-volt source and the other through a minus 2-volt
source. The diodes are connected so that they are in a reverse-biased condition unless
the voltage on the SCO input line exceeds the bias voltage either in a positive or nega-
tive direction. The normal plus 5-volts or minus 1. 25-volt telemetry signals will not
cause the diodes to conduct. The bias voltage sources are of sufficiently low imped-
ance to effectively short the SCO input in the presence of high-voltage noise spikes.

One minus 1.25-volt pedestal source is derived from the minus 23. 7-vdc bus in the
signal conditioner. The other minus 1.25-volt source is derived from the minus 15.5-
vdc output of the new dc-dc converter by means of a resistive voltage divider. Both
plus 6.2-volt bias sources for the positive voltage-limiter diodes are derived from the
plus 28-vde bus. One minus 2-vde bias source is derived from the minus 23.7-vdc
negative bus. The other minus 2-vdc bias is derived from the minus 15.5-vdc output
of the new dc-dc converter by means of another divider network.

The dc-de converter changes the plus 28-vde from the spacecraft bus to minus 15.5-
vdc to provide an additional negative voltage supply. The DC output at the filter
capacitor is minus 18. 3-vdc with plus 31-vdc at the converter input terminals. The
minus 18-vdc is dropped to minus 15.5-vdc through a carbon resistor to a 1N695
Zener diode which regulates the output at minus 15.5 vdec.

Normal load current for the dc-dc converter is approximately 15 milliamperes; it has
been tested successfully with a 40 milliamperes load.

One of the mechanical commutators was subjected to a complete SERT qualification
level environmental test in accordance with Test Procedure SP0O-46 (Reference III-6)
and SERT Environmental Testing Specification, RCA Drawing No. 1175389 (Reference
I11-7).

The variation between pulses due to varying source impedances in the telemetry
circuits was adjusted during system calibration and did not degrade overall system
accuracy.

Reference ITI-5 describes this design and development effort in detail ; references
IIT-6 and IMNI~-12 describe the testing results.
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5. Subcarrier—Oscillator (SCO) Package
a. General

Each SCO package (Tigure I1I1-13) provides the mixed fm signal which forms
the input, or carrier modulation, to the fm transmitter. This signal is a mixture of
the outputs of three independent fm subcarriers and the accelerometer signal con-
ditioner (see Figure III-14). The SERT system utilizes two such packages in its
semi-redundant telemetry subsystem design.

Figure I1I-13. Subcarrier-Oscillator Package

b. Description

Each SCO package consists of a plug-in reference voltage generator, three
plug-in fm subcarrier oscillators with center frequencies of 1.7kec, 7.35ke, and '
10.5ke, a passive mixing network, and a remote subcarrier input. The package will
accommodate two additional plug-in fm subcarrier oscillators.

The reference voltage generator provides several reference voltages. Three of these
voltages (0, 2.5, and 5) provide zero, mid-range, and full-scale calibration to one
commutator; only zero and full-scale (5 volts) calibration voltages are provided to the
other commutator.
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Figure III-14. Block Diagram of the Subcarrier-Oscillator Package
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On-board-programmer milestone information and command-activate confirmation
modulate the two 1. 7-ke subcarriers, respectively.

The data consists of 0- to 5-volt staircase signals which frequency modulates the sub-
carrier to the standard IRIG (Intra-Range Instrumentation Group) bandwidth of £7.5
percent. Sun sensor data similarly modulates the 7.35-kc subcarrier.

Ton-engine data and spacecraft housekeeping data in the form of the commutator wave
trains modulate the 10.5-kc subcarriers. This oscillator is also designed to frequency
modulate the SCO to the standard +7.5-percent bandwidth with an input-signal range of
minus 1.25 to plus 5.0 volts.

On-board accelerometer data is fed directly to the mixer package. Circuit isolation
is provided by a 200 kilohm resistor.

The three fm subcarriers and the accelerometer signal are combined in a resistive,
passive mixer to produce the signal which modulates the transmitter.

c. Development

The design and development of the SCO package was subcontracted. The
original units selected showed poor performance and a questionable failure history
in spite of concerted efforts toward improvement; this subject was fully covered in
Reference III-8. The original SCO's were delivered for use on the T-2 spacecraft
(the electrical prototype model). The SCO packages selected for the prototype and
flight spacecraft met design specifications without difficulty.

During the program, mechanical commutators were substituted for electronic com-
mutators(paragraph III-D.4.b). Because the output of the mechanical commutator

was minus 1.25 to plus 5 volts rather than the 0 to 5 volts used for the electronic com-~
mutator, the 10.5-kc SCO's were replaced to accommodate the new input-signal range.

6. RF Transmission Equipment
a. General
The outputs of the SERT transmission equipment are two 10-watt fm-fm rf

signals at frequencies of 240.2 and 244.3 megacycles. All spacecraft data is telem-
etered by way of these two channels with most of the critical data being redundant.

b. TFunctional Description

Two 10-watt tube-type power amplifiers, two 2-watt solid-state power-
amplifier exciters, and two dc-dc input-power converters comprise the active rf
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transmission equipment. (See Figures III-15 and III-16.). The subsystem receives its
primary power from the spacecraft telemetry battery. The de-dc converter converts
an input 28vdc to 6.3 and 300 vdc regulated for power amplifier filament and B+
voltages, respectively. The component also has available a regulated 28vdec.

28 vV DC-DC
CONVERTER
63V 300v
2-WATT IO-WATT
SCO PACKAGE NO. | === FM EXCITER POWER rre——
2402 MC AMPLIFIER
TO ANTENNA
ASSEMBLY
2-WATT 1I0-WATT
SCO PACKAGE NO. 2 ==l FM EXCITER POWER
2443 MC AMPLIFIER
€3V 300V
28 vV bC-0C
CONVERTER

Figure II-15. Block Diagram of the RF Transmission Equipment

The fm exciter is a solid-state oscillator capable of a power output of two watts. The
exciter is frequency modulated by the multiplexed signal from the SCO package. The
modulation signal is adjusted for a carrier deviation ratio of 1.

The power amplifier is a tube-type unit which amplifies the two-watt rf signal to a
power level of 10 watts (minimum). The power levels during testing were normally
12 to 12.5 watts. The two power-amplifier outputs are combined in diplexer (Figure
III-17) to provide one 50-ohm output which feeds the antenna equipment.

c. Development

This subsystem, as designed, fit into the SERT system most acceptably.
Only the de-dc converter presented a potential problem. Because of its location on
the spacecraft, a thermally-marginal condition was anticipated. To remedy this situ-
ation, the rf equipment was modified to eliminate the use of the 28-volt regulator in
the dc-dc converter. The low-drift versus input-voltage characteristics of the fm
exciter and the good battery self-regulation during the mission life made this modifi-

cation possible.
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Figure III-16. RF Transmission Figure II1-17. Diplexer
Equipment

Later in the program, the dc-dc converter was placed on the spacecraft in what was
thought to be a better location; however, a marginal thermal condition was again de-
tected. Rather than relocate the converter, the input voltage was reduced to 25vdc by
adding a tap to the telemetry battery. This resulted in thermal compatibility again on
the T-2 model.

On later spacecraft, the use of a25-volt battery tap for the rf-subsystem power feed
was eliminated and the use of 28 volts restored. This change was made to allow the
use of the battery beyond its expected mission life during systems testing. In these
later models, the converter was placed in a location which did not create a marginal
thermal condition.

7. Antenna Equipment

a. General

The SERT antenna assembly radiates telemetry information on the 240.2-
and 244.3-megacycle frequencies and receives command signals on 148. 26 megacycles.

I1I-28




Both the transmitting and the receiving antenna assemblies were designed to fulfill
the following three objectives:

(1) To provide a circularly-polarized radiation pattern shaped in a 160 de-
gree cone, centered at the spin axis and facing downward from the space-
craft. (See Figure II1-18.) This pattern must be within +3 db of a hemi-
spheric isotrope.

(2) To provide a reasonably low VSWR on the two 50-ohm transmitter out-
puts and on the one 50-ohm receiver input.

(3) To obtain maximum isolation between transmitter outputs and receiver
inputs.
b. Description
(1) Transmitting

The transmitting portion of the antenna assembly consists of a diplexer,
a 3-dbcoupler, a phasing-coupling network, and four antenna whips. (See FigurelI-19.)

ISOTROPIC RADIATION
LEVEL

-3 DB UNDER

+3
ISOTROPIC LEVEL DB OVER

ISOTROPIC LEVEL

SPIN AXIS (Z)

LOWER HEMISPHERE

Figure III-18. Antenna-Pattern Requirements
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Figure III-19. Block Diagram of the Transmitting Antenna Equipment

The outputs of both power amplifiers (transmitters) are combined by a diplexer to al-
low simultaneous transmission into the 3-db coupler. The isolation between the input
(transmitting) ports of the diplexer must be greater than 22 db. The VSWR at these
ports must be less than 1.25:1 when the 3-db-coupler output is terminated by a 50-ohm
resistive load. The diplexer is capable of carrying a total of 30 watts of transmitting
power.

The 3-db coupler splits the transmitted power in two equal portions and provides a 90-
degree phase-shift between these halves. The isolation between the diplexer and the
phasing-coupling network is a minimum of 22 db with a VSWR less than 1.2:1.

The power is again split into two equal halves by the phasing-coupling network, provid-
ing an additional 180-degree phase shift between the antenna ports. The net result is
that each of the four antenna whips is fed by equal power which is electrically 90 degrees
out of phase with the power to the adjacent whip. The radiation produced is polarized
left-hand circular.

(2) Receiving

The receiving portion of the antenna assembly consists of a rejection
filter, a 3-db coupler, a phasing-coupling network, and four antenna whips. (See
Figure I1I-20). The rejection filter attenuates the transmitting frequencies more than
40 db, while adding less than 0.8 -db insertion loss to the receiving frequency. The
3-db coupler and phasing-coupling network serve the same purpose as in the transmit-
ting portion of the antenna assembly described above. The system is designed to
receive left-hand circularly-polarized radiation.
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Figure III-20. Block Diagram of the Receiving Antenna Equipment

c. Development

The present antenna assembly is the result of three evolutions from that orig-
inally proposed. The basic requirements for the shape, gain, and polarization of the
antenna patterns were unchanged; however, the transmitting and receiving frequencies
were changed several times.

(1) Proposed Antenna Assembly

The originally proposed antennas were to operate on 215 mc and 400 mc.
The 215-mc frequency was for command (receiving), and the 400-mc frequency was for
telemetry (transmitting). These frequencies were changed subsequent to award of
contract.

(2) Second Antenna Assembly

The second assembly was to operate at frequencies of 120 and 240 mec:
the 120-mc frequency for command and the 240-mc frequency for telemetry tracking.
The basic antenna consisted of four rods, one-quarter wavelength each at 120 mc,
mounted around the 10-inch-diameter base ring beneath the spacecraft. These whips
would be inclined at an angle of approximately 45 degrees from a perpendicular to the
axis of the vehicle. For 240-mc transmission, the radiators would consist of sleeves
concentric about the 120-mc radiators and located at the driven or ground end of the
120-mc radiators. The sleeves and rods were to be joined at the ground end providing
a system resonant at both 120 and 240 mc. The radiators were to be insulated at their
mountings and provided with appropriate co-axial fittings for subsystem connections.
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A phasing-coupling network was designed (1) to provide quadrature feed to the four anten-
nas, thus allowing circularly polarized radiation, (2) to match impedance from a 50-ohm
source, and (3) to permit coupling of the two 240-mc transmitters and 120-mc receiver
to the antennas with adequate isolation to prevent interference.

This antenna arrangement is feasible only when the frequencies have a harmonic re-
lationship. When the final frequencies were decided upon, the arrangement was
changed.

(3) Final Antenna Assembly

The final antenna assembly that evolved operates on two frequencies that
are not harmonically related — 148 mc and 240 mc. The receiving or command antenna
(148 mc) consists of four rods, one-quarter wavelength long at 148 me, mounted to the
10-inch-diameter base ring on the underside of the spacecraft. These radiators are in-
clined at an angle of approximately 45 degrees away from the vehicle spin axis.

The transmitting or telemetry and tracking antennas (240 mc) consist of a separate
set of rods, one-quarter wavelength at 240 mc, mounted to the base ring and inter-
spersed with the command antennas. Each of these antennas is oriented as follows
(See Figure II1-21):

(1) 45 degrees from the spin axis in a direction down and away from the base ring,
as viewed edgewise to a plane containing the spin axis and the antenna mount;
and

(2) Tangent to the base ring at the antenna mount, pointing clockwise, as viewed
from above.

A phasing-coupling network provides quadrature feed to the antennas for circularly
polarized radiation along the spin axis. The radiation patterns are shaped in a 160-
degree cone facing downward. The antenna gain is within + 3 db of a hemispheric
isotrope.

A large diameter ground plane (approximately one-half-wavelength in diameter at

148 mc) emanating from the base ring above the antennas, was necessary to provide
two features. The first was to modify the pattern so it would be uni-directional,
radiating most power in a downward direction from the spacecraft; the second was to
provide isolation of the radiating antennas from the components on the upper side of the
spacecraft.

During the development, many types of ground planes were tested. Some of these
were unsuccessful because they provided insufficient isolation from the other end of
the vehicle, others were too large physically, and others could not be properly folded
and unfolded.
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450 \

Figure I11-21. Antenna Orientation

The final configuration, which has the appearance of a spoked wheel, provided suitable
characteristics for the 240-mc frequency; however, much of the 148-mc received
power was absorbed by the spacecraft. To correct this situation and to redirect the en-
ergy to the receiving antenna whips, two detuning loops were added to the spacecraft
baseplate.

The specifications for the phasing-coupling network remained unchanged from the

start except that two networks were now required (one for each frequencyv) and that a
diplexer was added. This diplexer would couple the two transmitters to the phasing -
coupling networks, allowing simultaneous operation of both transmitters.

The system operates on the frequencies specified below:

Reception 148.26 mc
Transmission # 1 240.2 mc
Transmission # 2 244.3 mc
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The phasing-coupling networks, shown functionally in Figures III-19 and III-20, are
mounted on two printed-circuit boards which are 1/8 inch thick by 8 inches in diameter.
These networks weigh 2 pounds. The isolation from the transmitting (telemetry) output
port to the receiving (command) input port is greater than 60 db, and loss from input
to output does not exceed a maximum of 2.5 db at any of the above frequencies. This
network provides an input impedance at each port of 50 ohms with a maximum VSWR of
1.2:1 and is capable of handling a maximum power of 30 watts. The 50-ohm load in the
transmitting system is a special 15-watt rf resistor. Mounted beneath the spacecraft
baseplate in a thermal sink, this load is usedto absorb high reflected rf power occur-
ring under the high VSWR conditions of launch.

During July, 1962, two complete sets of whip antennas (one prototype and one flight
model) were assembled on a mock-up spacecraft and impedance-matched to a VSWR
of 1.2:1, or less, measured at the antenna ports of the phasing-coupling networks.
Several 9 -variable patterns were takenin the following ¢ planes: ¢ =0°, 22.5°, 45°,
67.5°, 90°, 112.5°, 135° and 157.5°. (Refer to Figure III-22 which identifies the
SERT antenna-pattern coordinate system.) For each ¢ angle, a pattern was taken
using first a horizontal dipole and then a vertical dipole; these patterns were designa-
ted Eeand E e respectively.

The Eand E , components for each ¢ angle were superimposed on the same recording
paper; a total of 48 patterns were recorded for each of the two antenna assemblies.

The isolation between the input port on the receiving phasing-coupling network and the
output port of the transmit network was measured to be 76 to 80 db, depending on the
transmitting frequency. '

All final electrical data were taken with the receive whips tied out a specified distance
to simulate the centripetal force due to the spin of the spacecraft. The transmitting

whips, being much shorter in length, would not spin out significantly and were therefore
tested in their static position.

Due to a decision to change the SERT spacecraft configuration from configuration A
to configuration B (see paragraph I-E and Table I-5), the antenna testing was termi-
nated after completing the impedance matching and electrical testing of two antenna

systems. The electrical data and patterns were entered into two logbooks (refer-
ences III-9 and III-10).

On January 14, 1963, RCA started testing three flight-model antenna assemblies. The
task was to match three sets of whips and to take one complete set of 8 -variable pat-
terns. No design changes or modifications were to be made.

For testing purposes, a mock-up SERT vehicle was used. This model, designated as
T-1C (representing configuration B), was fashioned in great detail out of balsa wood
and represented all major changes made in the vehicle structure. The balsa wood was
coated with a 10-mil thickness of aluminum using a hot-spray splatter process. The
actual metal housing for the matching-coupling assembly was also utilized.
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Figure III-22. Antenna-Pattern Coordinate System

For the first run, the antennas that were originally matched for the flight model tested
in July 1962 were installed on the mock-up SERT vehicle to determine the magnitude of
the changes in tuning.

Several significant changes had been made in the vehicle structure which affected the
impedance match. The first one was the addition of four metal clamp-deflectors
mounted near the antenna base mounts. An investigation showed that the brackets were
adding significant capacity to the base impedance of the transmitter whips. Because
these whips are extremely sensitive to changes in base impedance, retuning of the whips
would have been a major effort; therefore, the metal deflectors were replaced with non-
metal deflectors. After the metal clamp-deflectors were removed, the transmitter
whips tuned easily to give a VSWR of 1.2:1, or less, at both diplexer input ports.
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The receive whips, however, could not be tuned without making changes in the whip
length and the base capacity. The changes made in the new vehicle components, even
though they were made above the antenna ground plane, caused an impedance change in
the receiving whip antennas. The limits set on the size and design of the radial-wire
ground plane was, in large measure, the basis of this problem. The receive whips were
successfully tuned by increasing the diameter of the capacity slug to 0.265 inches, de-
creasing the capacity dielectric to 0. 0045 inch, and trimming the antenna length to

21.0 inches.

The very irregular shape of the E 9 and E(p patterns at the receive frequency caused

some concern. A thorough investigation showed that all the receiving whips were
receiving equal power at the power-voltage phase; however, the axial ratio along the

+7 axis (Figure IlI-22) was very poor. Further investigation, including rotating the
antenna feeds and feeding one pair of whips at a time, showed that the inefficient ground
plane and the irregular shape of the vehicle were definitely causing cross-polarized
energy. It was shown that the axial ratio could be improved if the ground plane were
made larger and made to look more ''solid". However, since the vehicle will be re-
ceiving left-hand circularly polarized energy from the ground antenna, the poor axial
ratio is of minor importance. Using a left-hand circular-polarized source antenna,

the ¢-variable cuts showed the patterns to be practically smooth circles for 8 -angles
from 0 to 45 degrees. As 0 became greater than 45 degrees, the ¢ -variable patterns
did have a somewhat four-lobed shape to them. However, this did not cause much con-
cern since 8-angles greater than 45 degrees would be outside of the look area during
flight. The cross-polarized energy, however, will cause approximately a 1-db decrease
in gain. The transmit patterns were quite acceptable. The ground plane is much more
effective at the higher frequency so that most of the transmitted energy is directed in
the forward direction.

After all three antennas were tested, the six antenna patterns were examined to determine
(1) whether they actually represented the radiation pattern of the spacecraft and (2)
whether the measured patterns were compatible with system requirements. The fol-
lowing determinations were made:

(1) Considering the ground plane on the command frequency (148.26 mc) it was
found (as above for the first antenna tested) that the ground plane may be too
small electrically to have the desired effect. Thus, spacecraft protrusions
may cause a non-symmetrical radiation pattern with power-density minimums
in the essential directions.

(2) The telemetry antenna patterns seemed to be an accurate representation of the
actual spacecraft radiation pattern.
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(3) The command-antenna patterns showed some non-symmetrical performance
and a peculiar polarization tilt had also been noticed; therefore, it was de-
cided to check the ellipticity of these patterns by utilizing an entirely new
measurement technique. This technique involved (1) using several patterns
to devise a composite antenna pattern and (2) using @ -plane data to deter-
mine O-plane plots.

In May 1963, two sets of antennas were successfully matched to a VSWR less than 1. 2:1,
and one complete set of radiation patterns were taken with the detuning wings in the
horizontal position. Field measurements at the command frequency were taken to
determine the isotropic level; horizontal and vertical standard dipoles were used for
this test. This measurement was then repeated using a circularly polarized signal
source and rotating the spacecraft mock-up on its spin axis. The results of these
tests demonstrated that the ellipticity of the circularly-polarized field was within
specified limits (less than 1.5 db).

The matching of one set of whips was then checked and the following results were
recorded:

Frequency (mc) Port VSWR
148.26 J2 Filter 1.06:1
240.20 J1 Coupler 1.20:1
244.30 J1 Coupler 1.06:1

Changes were then made in the spacecraft configuration (to configuration C). As a
result, a new series of tests was necessary to check the radiation patterns and tuning
of the antennas.

Specifically, the following tasks were required:
(1) Rechecking the tuning of command and telemetry antennas,

(2) Recording a set of command-antenna patterns using a left-hand circularly
polarized probe (including gain measurements, primary-and-check 6 -plane
patterns, and primary-and-check ¢ -plane patterns), and

(3) Repeating (2) above for the telemetry antenna patterns on both transmitting
frequencies.

In order to prepare the modified SERT antenna-mock-up model, T-1C, for retuning, a
double check of the prototype phasing-coupling network was necessary. Testing of this
prototype network was completed on January 26, 1964; however, because of discrepan-
cies found in the cables and connectors for this component, an actual flight-model net-
work was also tested; the test results indicated general conformance with specifications.
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The retuning was finally completed on March 5, 1964, and the equipment was delivered
to the antenna range where the antenna patterns were to be taken.

During the above testing, some difficulty was encountered in inserting some of the
straight cable connectors. To resolve this problem the straight cable connectors were
replaced with right-angle connectors in certain transmitting antenna cables.

Before actually starting antenna-pattern measurements at the antenna site, VSWR
tests were run. These tests had to be performed twice because the chevron ring,
which is the upper portion of the separation mechanism and is attached to the space-
craft during flight, was not installed during the first test. The results from the second
test (given below) include VSWR measurements taken with and without the chevron
ring.

VSWR
Frequency (mc) Without Chevron With Chevron

Port J1 240.2 1.23:1 1.36:1
244 .3 1.41:1 1.35:1
Port J2 - 240.2 1.43:1 1.8:1
244 .3 1.55:1 1.48:1
Port J3 148.26 1.165:1 1.18:1
Port J4 148.26 1.12:1 1.13:1

The only significant change measured was at port J2, but even this change did not re-
sult in a serious deterioration in VSWR readings. The chevron ring was left on the
mock-up for the antenna pattern-measurements.

For these pattern measurements, a standard dipole, with a known 1. 8-db gain over an
isotropic source, provided the reference level. A 73-degree corner reflector, with
52-inch by 87.25-inch sides and 8. 75-inch flatness at the vertex, and an adjustable
half-wavelength dipole served as the transmitting antenna.

Analysis of the receiving frequency patterns in the 6 plane showed that these patterns
were reasonably symmetrical about the +Z (rotation) axis with the maximum power
density in the 6 = 0-degree direction. There was less than +3db of power variation
over the entire radiation pattern. As expected, the minimum power density was in the
8= 80-degree direction.
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The minimum radiated power level was no more than minus 9 db below the maximum
radiated power level. This represented a loss of 2 db compared with the model previously
tested in April, 1963. This loss was due to changes in the geometrical configurations

in the spacecraft and the alterations in the detuning wings.

The 240.2-mc transmitting antenna patterns presented no problems because the ¢-
plane primary patterns were very similar to the corresponding check patterns and
the deviation was less than 3 db. See Figure MI-23 for an example of the antenna
pattern for the final configuration.

In general, the SERT antenna patterns, taken between March 23, 1964, and April 24,
1964, at the antenna range were representative of the new spacecraft configuration.
Comparing the patterns taken using the new mock-up with those taken using the pre-
vious mock-up, only minor differences were found; that is, the command and trans-
mitting frequency antenna radiation patterns remained basically the same even though
the spacecraft geometry and the shape of the detuning wings were changed.

8=0°

8=90° 8=270°

f =240.2 MC
v-E¢

H'Ea

8-=180"

Figure II-23. Example of Antenna Patterns for the SERT Final Configuration

II1-39




E. COMMAND AND CONTROL SUBSYSTEM

1. General

The command and control subsystem of the SERT spacecraft was designed to fulfill
all in-flight control requirements.

In the original design concept, the spacecraft programmer was to be the only control
element. A hard-line command through the umbilical (Payload Activate) was to be
given a few seconds before lift-off to initiate the operation of the programmer. The
programmer was then to be in absolute control of the flight sequence.

During the early development of the SERT program, an rf-link command subsystem was
included as a back-up source to supplement the programmer in controlling the most
critical functions of the flight sequence and to provide ground control in case of pro-
grammer failure.

In the final stages of the program, an auxiliary command unit was designed into the
system to increase the flexibility of the command subsystem. With these refinements,
ground control of all critical spacecraft functions was obtained, adding accessibility
to control functions not before included in the programmer—controlled—flight sequence.
The additional capability proved to be indispensable during system testing and later
throughout the actual flight.

2. Subsystem Description

The command and control subsystem of the SERT spacecraft consisting of the
command receiver, command decoder, auxiliary command unit, and the programmer
provides full ground and in-flight control of the spacecraft operations. The receiver
and command decoder are integrated in a single unit called the command subsystem.

The outputs of the programmer are signals (primarily in the form of relay closures)

which activate functions within the power-switching unit (PSU) and the ion-engine sub-
systems.

Command and control functions which are independently controlled by either the com-
mand subsystem or the programmer are channeled directly via the spacecraft harness
to their appropriate destinations.

A third control source which is to be used in the initial stages of the flight is contained
within the spacecraft in the form of a barometric switch. This switch, added for range
safety, will provide a squib-arming signal to the power switching unit at about 30, 000
feet altitude. This function is backed-up by the command system.

Command acquisition by the spacecraft as well as programmed command execution

confirmation are monitored at the ground control center through the spacecraft tele-
metry system.
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A listing of the programmer times and events and description of a typical flight se-
quence is given in Table I-2.

3. Command Subsystem
a. General

The SERT command subsystem, consisting of the command receiver and com-
mand decoder, receives, processes, and decodes the rf command signals transmitted
from the ground teiemetry station to the SERT spacecrafi; a 10-command capability is
provided. The subsystem is designed to have a high immunity to noise and spurious
signals; this characteristic is obtained through a combination of (1) use of combinations
of discrete times, (2) tone integration, and (3) prescribed tone sequencing. The re-
ceiver provides a demodulated subcarrier output which is fed into the decoder. The
command decoder processes the subcarrier by means of digital-type logic. The de-
coder has a capability of processing ten commands by ten discrete relay closures. Upon
receipt of a particular command signal, the decoder closes a DPDT-type relay which
connects a particular control point to the 28-volt battery level and provides a discrete
command-confirm signal which is transmitted back to the ground telemetry station
via the telecommunications subsystem. Each of the 10 independent commands is
activated by depressing the associated bufton in the ground station. Only one command
may be transmitted at any one time.

As shown in Figure III-24, a command signal consists of two audio-tones of different
frequencies sent in a real-time sequence. The following five tones are used to obtain
the ten command signals described in Table III-1.

Tone Frequency (cps)
A 400
B 560
C 730
D 1300
E 1700

b. Functional Description

(1) Command Receiver

As shown in the block diagram of Figure III-25, the 148.26-mc rf signal from
the antenna network is fed to the rf amplifier of the command receiver. The ampli-
fier feeds its output to a mixer which beats the incoming rf frequency with the local
oscillator frequency of 128.26 mc and provides a 20-mc i.f. output signal. The i.f. am-
plifier consists of four 20-mc amplifier stages and a crystal filter which determines
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Figure I1I-24. Typical Command Signal Timing Sequence

the pass-band characteristics of the receiver. The bandwidth of each i.f. amplifier stage
is sufficiently wide so that only the crystal filter determines the bandpass. This type
of design eliminates the problem of change in i.f. bandwidth and center frequency with

change in AGC voltage. The AGC voltage is supplied from a separate detector and is
applied to the base of the transistor of the rf and i.f. amplifier stages tocontrol the re-

ceiver gain. Originally, this receiver was developed for NASA under the TIROS pro-
gram.

\

(2) Command Decoder

The command signal consisting of two audio tones in a fixed time sequence is
applied to the five bandpass-filter channels of the command decoder. Each bandpass
filter is tuned for one of the five audio-tone frequencies. A block diagram of the de-
coder logic is shown in Figure ITI~26.

148.26 MC
RF INPUT J 20MC EMITTER
N c A RECEIVER OUTPUT
FROM ANTENNA—®] RF AMP MIXER IF AMP DETECTOR |1 £OLLOWER [ 1o commtan DECODER
DIPLEXER
128.26 MC
LOCAL AGC AGC
OSCILLATOR DETECTOR AMPLIFIER

o AGC
VOLTAGE

Figure ITI-25. Block Diagram of the Command Receiver
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When a specific command is received, each audio tone of that command is selected by
its respective filter. The envelop of the audio tone is detected and is integrated to set
the Schmitt trigger associated with that particular audio-tone channel. When the
Schmitt trigger for a particular channel is set, all other Schmitt trigger outputs are
inhibited and the system will not recognize another tone. The Schmitt trigger also sets
that channel flip-flop. A reset delay time is initiated when the flip-flop is set. If the
second tone of the command is not received within three seconds, the flip-flop will be
automatically reset and the system will return to the standby state. In addition, the
AND-gate logic associated with the particular tone is placed in the ready state when the
flip-flop is set. After 0.75 seconds, the first command tone is dropped and no tone is
sent for one second. During this one-second period, the Schmitt trigger set by the
first command tone returns to its normal state, and the inhibit on the other Schmitt trig-
gers are removed. When the second tone arrives, it is processed in a manner similar
to the first tone. The Schmitt trigger associated with the second command tone is set;
all other Schmitt triggers are inhibited; the flip-flop associated with the active channel
is set; and the AND~gate associated with the particular command is activated,
energizing the associated relay. Any relay closure inhibits the flip-flop reset circuit
from operating. The relay remains closed as long as the second command tone is
present. When the second tone is removed, the Schmitt trigger resets after a delay,

the relay opens, and the flip-flop reset operates. The decoder operation for all com-
mands (No. 1 through No. 10) is processed in a similar manner utilizing the appropri-
ate lngic elements.

¢c. Development
(1) Design Considerations
It was required that the SERT command subsystem operate in a noise environ-
ment expected to be on the order of 47 db/KTB. In this environment, it is necessary
to insure that:

(a) No command would occur due to a noise input alone.

(b) A command can be obtained when desired, with an anticipated minimum
signal input of 12 microvolts to the receiver.

(c) No command would occur due to triggering from spurious radio broad-
casts.
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The anticipated minimum carrier-to-noise ratio (C/N) at the receiver input was com-~
puted as follows:

Transmitter Power (2 KW) 33 dbw
Transmitter Antenna Gain 12 db
Path Loss for 4000 mi. Slant Range -151db
Receiving Antenna Gain -3 db
Polarization Loss -3 db
Network and Cabling Loss -3 db
Received Power =115 dbw
Receiver plus Antenna Noise* -147 dbw
Receiver Input C/N 32 db

The worst-case input signal can be computed as follows:

log (%-) = -115 dbw

log (-l'> = 115 dbw

A
Xl =3.2 x 10"
2
P =X—, VZ=PR, R=50 O

v = (3.1x 1072 (50) = 1.55 x 1010

V =12.5x10° =12.5 W volts

This 12.5 microvolts level is sufficiently above the receiver sensitivity threshold of
1.0 microvolt.

A conservative design goal for operational capability in the presence of background
noise which is 50 db above KTB noise was established. This requirement was to pro-
vide for the possibility of noise generated by the ion engines. Subsequent tests with
specially designed and calibrated noise generators verified that the system would op-
erate in a background noise environment of at least 47db above KTB noise. Based on
these results, the maximum receiver plus antenna noise under which the unit will op-
erate is -100dbw. Under worst conditions, for which the system will still operate,
the carrier-to-noise ratio is

C/N = (-115) - (-100) = -15db.

*For TIROS receiver, Teff = 3400 °K and B = 40kec.
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Since a minimum carrier-to-noise ratio of +32db is anticipated, a margin of at least
47 db should exist to satisfy unknown noise conditions. The system is actually tested
for proper operation when the carrier-to-noise ratio is -12db.

(2) Noise Immunity

The method of signal processing performed in the decoder provides a high
degree of noise immunity. With an environmental noise level of 47 db above ambient,
the carrier-to-noise ratio at the detector will be -15db. From the Fubini and Johnson
analysis (Reference III-11), the theoretical value for an a.m. detector can be obtained
as follows.

For i.f. bandwidth (BI) of 40 ke, decoder post-detection filter bandwidth (BA) of 68 cps,
and 100 percent modulation,

BI
2 xBA

—§—=—26 +10 log =-1.3db

where T/N is the tone-to-noise ratio, and -26db is the post-detection S/N for input
C/N = -15db. By setting the integrator rise time to 0.5 seconds, the decoder post-
detection bandwidth is reduced to 1 cps, and the theoretical T/Nat the output at the in-
tegrator becomes +17 db.

After integration, it is assumed that the spectrum takes the form of a Rayleigh distribu-
tion. From the Rayleigh distribution curves, for a S/N of +17 db, the cumulative proba-
bility that a noise envelope will exceed 17 db and trigger the channel is less than 2x10-11,

The measurement of the signal-to-noise ratio for a Rayleigh Distribution can be found
in terms of known and measurable quantities. The signal-to-noise ratio required to
satisfactorily operate the Schmitt trigger of an audio-tone channel is

Av
S/N = 20 log BN
2

where

A v is the change in dc voltage on the integrator capacitor, and

EN2 is the rms noise present after integration.

Since EN_ connot be measured directly, it is measured in terms of the following para-
meters:

IT1-48




where

EN. is the rms noise at output of bandpass filter;
BW is the post-detection bandwidth of filter;

. . . 0.5
B is the bandwidth of integration = —T—; and

T is the integration rise time.

. S/N =20 log (A——_ ' %)
EN1

(Ir-1)

Measurements were made on the prototype command subsystem. The following data
was taken with 47 db/KTB noise and a minimum signal strength of 0.25 volts applied
to the input:

EN1 = 1.1 vrms

BW =68 cps
B=1
Av =0.95

The worst case occurs for the 17 00-cps audio-tone channel (the maximum bandwidth
filter). Applying equation ITI-1, the signal-to-noise ratio at the output of the band-
pass filter is 17.2 db. From the Rayleigh curve shown in Figure m-27, this S/N
corresponds to a probability of approximately 1 x 10~11,

(3) Immunity to Spurious Signals
In addition to the protection provided by receiver limiting and filtering and
integration of the subcarrier, the multiple-tone coding system is used. To execute a
command, the system must receive two tones of different frequency in proper time
sequence.
(4) Integration of Receiver and Decoder
Before integration with the command decoder, the receiver is thoroughly

tested over its operating temperature range. When acceptable operation is demon-
strated, the receiver is integrated with the decoder. At this time, the gain of the audio
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amplifier in the decoder is established and timing and telemetry resistors are selected.
Due to variations in maximum receiver output from unit to unit, receivers and de-
coders cannot be indiscriminately interchanged once a pair has been integrated. I it
becomes necessary to replace a receiver, operation within specification must be veri-
fied over the temperature range and additional realignment performed if necessary.

4. Auxiliary Command Unit
a. General

The auxiliary command unit (ACU) was added to thc SERT spacecraft as a
result of the reliability study which was conducted for NASA (see Section VII) and the
ion-engine development testing on spacecraft T-2. This unit (see Figure III-28) and
the diode board were added to flight spacecraft T-3.

bl

Figure I[I-28. Auxiliary Command Unit
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b. Functional Description

The auxiliary command unit (Figure HI-29) is functionally integrated into the
SERT system between the command backup facilities and the spacecraft control equip-
ment to provide additional ground control of the ion engines. The unit in conjunction
with the diode board (Figure II-30) causes the system to perform the following ad-
ditional functions when the following commands are given:

(1) Command No. 3

In addition to arming the spacecraft squibs, this command also enables
reset to Mode I from Mode II.

(2) Command No. 5

In Mode I (original mode), this command performs its original function
by firing the unfold squib. In Mode II (activated by Command No. 7),
Command No. 5 turns off the cesium-contact-engine subsystem, turns
on the mercury-bombardment-engine subsystem, and energizes and
latches the neutralizer heater power of the mercury-bombardment
engine.

(3) Command No. 7

In addition to the function of firing the cesium-contact-engine pod door
it now interrupts the magnetic field power supply of the mercury-
bombardment-engine, turns the boiler heater of the cesium-contact
engine off, and selects Mode IL

(4) Command No. 4

In addition to activating the dc voltages for the ce sium-contact engine
and firing the ground-plane squibs, this command now closes the
cesium feed valve, and deactivates the boiler of the cesium-contact
engine.

(5) Command No. 10

In addition to its normal function which is to reset the programmer to
zero, it turns off the mercury-bombardment engine and energizes its
neutralizer heater for the duration of the command, and turns on the
cesium-confact engine,

The auxiliary command unit also has a coded output which corresponds to the setting
of its internal mode relay. This signal is processed via the commutated telemetry.
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c. Development

The development of the auxiliary command unit was accomplished without
difficulty. The circuit logic of the auxiliary command unit was defined by the system
requirements and the requirement for compatibility with existing units.

Relays, because of their relative simplicity and because of the potential effects of en-
gine arcing on solid-state switches, were selected to accomplish the circuit switching,
Diode quads were used where blocking diodes were required in circuits which were
critical to the mission.

The auxiliary command unit was integrated into the SERT system with only one inter-
face discrepancy. Here a sneak circuit latched the internal mode relay by way of the
spacecraft pressure switch which arms the spacecraft squibs. The insertion of a
blocking diode into the harness corrected the problem.

During the acceptance testing of the flight spacecraft, T-3, the diode board was added
(at NASA request) to enable the simultaneous shut off of the cesium boiler heater and
its feed valve while retaining the independent control of each. This was to be accom~
plished using command back-up facilities.
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The board essentially became an additional auxiliary unit. It was designed using diode
quads, fabricated, and installed by splicing it into the harness. It successfully passed
all system tests.

5. Command Programmer

In—flight operation of the SERT spacecraft is controlled by the command pro-
grammer (GFE) developed by NASA Lewis Research Center in Cleveland, Ohio.

The programmer generates the controlling pulses to the various subsystems in
accordance with the flight sequence. These pulses consist of relay closures feed-
ing +28 vdc.

Timing within the programmer, which is started when the Payload Activate command
is given 30 seconds before lift-off, is provided by a one-pulse-per-second generator.

The programmer also provides a series of coded voltages, representing a profile of

the flight sequence, to the telecommunications subsystem for transmission to the ground
receiving station, hence providing a real-time monitor of the flight sequence. A de-
tailed description of the programmer functions is given in Table I-3.

F. POWER SUBSYSTEM
1. General

The power subsystem of the SERT spacecraft consists of two batteries (GFE) and
the power-switching unit. The batteries have a combined power output capability of
2.0 kilowatts per hour. Power is supplied through the power-switching unit to all the
spacecraft subsystems. All batteries are of the zinc-silver oxide primary type which
are charged by the addition of electrolyte shortly before use.

2. Batteries

The main battery and the telemetry battery are the two primary power sources
in the SERT spacecraft. The main battery, which consists of a set of two series-
connected batteries, serves as the primary power source. It is used to power the
engine subsystems. A separate battery is employed to supply power to the telecom-
munications and command and control subsystems in order to isolate these subsystems
from the transients and noise associated with the high-power switching and high-voltage
arc-overs inherent in the operation of the engine subsystems.
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The two series-connected batteries continuously supply 56 volts to engine subsystems
via the harness, fuse block, and power-switching unit. These batteries also supply

28 volts from their center tap to the control circuits of the engine subsystems. The
momentary high currents which are required for activation of all the explosive devices
within the spacecraft are also supplied by these batteries. The main battery supply is
capable of providing 1.7 kilowatt-hours.

A 28-volt, 300-watt-hour battery is employed to power the command and control sub-
systems, the telecommunications subsystem, and the sensory subsystem. Again, all
power switching is accomplished within the power-switching unit. The batteries were
selected by NASA to meet total spacecraft requirements and were provided to RCA for
integration.

3. Power-Switching Unit
a. General

The SERT power-switching unit was designed to serve as a central point on
the SERT spacecraft for a number of basic electrical functions. These functions in-
clude the distribution of primary power, the sensing of primary power data, provis-
ions for firing the spacecraft squibs, and provisions for the hardline interconnection

of the spacecraft to the ground test station. A simplified block diagram of the power-
switching unit is shown in Figure III-31.

b. Functional Description

The power-switching unit (PSU) operates on signals generated by the program-
mer, the command subsystem, and the ground-test-station control panel to perform a
variety of functions which provide control of the SERT spacecraft. The unit serves
four basic functions: power switching, battery monitoring, squib firing, and hardline
ground control.

The PSU has six power-feed circuits, five of which are switched on and off by external
commands; circuit No. 1 continuously feeds the main battery voltage of 56 vdc to the
engine subsystems via the fuse block.

Circuits No. 2 (K1) and No. 3 (K2) switch the main battery voltage of 28 vdc to either
of the engine subsystems upon either programmer, command-subsystem (via the
auxiliary command unit), or umbilical command; this affects the on-off operation of
either subsystem. Lockout circuitry prevents the simultaneous activation of both
subsystems. Circuit No. 4 (K3) switches the main battery voltage of 28 vdc to the ion-
beam-probe mechanism, the accelerometer heater, the neutralizer voltage control
unit, and the cesium-contact-engine control box upon receipt of umbilical commands.
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Circuit No. 5 (K4) switches the telemetry battery voltage of 28 vdc to the telecommuni-
cations subsystem, the programmer, the auxiliary command unit, the command subsys-
tem, the sun sensors, and the accelerometer electronics upon receipt of umbilical
commands. Circuit No. 6 (K5) switches the telemetry battery voltage of 28 vdc to the
rf subsystem upon receipt of umbilical commands.

The power-switching unit monitors the battery voltage levels and the current drain on
the batteries and feeds the monitored information to the telecommunications subsystem.

The PSU has an arming circuit and three firing circuits which, upon command, activate
the spacecraft gquibs. Arming commands are derived either from a pressure switch
or the command backup. Disarm commands are obtained via the umbilical. Each
firing circuit is commanded either from the programmer, the command backup, or the
umbilical. Firing circuit No. 1 (K7) simultaneously fires four damper and four space-
craft/vehicle separation squibs.

Circuit No. 2 (K8) fires four arm-release squibs, twofor each engine-extension arm.
Circuit No. 3 (K9) fires two ground-plane squibs.

Hardline ground control utilizes three umbilical cables: the primary power cable and
the test cable which connect directly to the power-switching unit, and the flyaway
cable which connects to the spacecraft harness.

The power supplied by the umbilical cable substitutes for the spacecraft battery power
to provide external primary source inputs — one at 56 vdc and three at 28 vdc.

The power-switching unit, when operated with the test umbilical cable connection, al-
lows independent ground control of its five subsystem switching circuits, control of
squib arming and disarming, control of each firing circuit, monitoring of each firing
circuit, and control of specific functions of the programmer. Among the programmer
functions that can be controlled are start, stop, restart, reset, and test; the latter
provides facilities to drive the programmer accumulator by using an external oscil-
lator.

The PSU, when operated with the flyaway umbilical cable connection, permits further
control of the spacecraft activity associated with launch countdown. A lead from the
load side of each switching circuit is used either to supply external power to a par-
ticular subsystem, or to indicate the status of the switching circuit, i.e., closed or
open.

The power-switching unit also performs a Payload Activate function and a Payload Off
function when operated with the flyaway umbilical connection. Upon receiving a Pay-
load Activate signal, circuitry within the PSU causes all of the spacecraft subsystems,
except the mercury-bombardment engine subsystem, to turn on. This signal also
pulses the disarm coil of the squib-arming relay to ensure "no fire' before the coil is
armed by the altitude-sensing pressure switch. This Payload Activate signal is also
fed via the harness to the programmer where it causes the initiation of the flight
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count. The Payload Off signal causes all of the spacecraft subsystems to shut off
and, via the harness, resets the programmer to zero.

¢. Development
(1) Power Switching

Primary power switching to the five major spacecraft subsystems had to be
accomplished before and during flight operation. A voltage level of 28 vdc at currents
up to 10 amperes had to be switched to the rf equipment, the telemetry equipment, and
the programmer. Voltage levels of 28 vdc at 3.5 amperes and 56 vdc at currents up
to 30 amperes had to be switched to the cesium-contact and mercury-bombardment-
engine subsystems.

Relays and solid-state devices were two methods of power switching that were inves-
tigated during the course of the study and design. Relays offer a distinct advantage in
their circuit simplicity and their proven usage in satellite hardware. For this par-
ticular application, however, certain disadvantages are evident. First, the high cur-
rents associated with the 56-vdc power necessitate rather large contact masses and
coil powers, hence rather large and heavy relays. Second, contact closure had to be
maintained at high-current levels throughout the high vibration period experienced
during launch and still be operable during flight.

- Solid-state devicessuch as silicon controlled rectifiers with no moving parts offer
advantages in their great immunity to vibration and their high current carrying ca-
pacity (a condition of prime importance in this application). Other advantages include
their small size and weight. The disadvantages of the solid-state devices were also
considered. Circuit design is complicated, especially for shut-off. High power losses
are encountered by relatively high junction impedances, thus necessitating large heat
sinks and special mounting techniques. The possibility of false firing due to noise
was also considered a disadvantage. Turn-off requires application of output voltage
in excess of nominal values.

It was concluded that, due to their high current-carrying capacity and high immunity
to vibration, silicon controlled rectifiers best enabled reliable operation in the unusual
SERT spacecraft switching operations.

A simplified diagram of the circuit used for switching power to the telecommunica-
tions subsystem and programmer is shown in Figure II-32. A similar diagram for
the engine subsystems is shown in Figure II-33.

After qualification of the SCR-operated unit at the component level and during pre-
liminary spacecraft testing, it was discovered that the cesium-contact-engine sub-
system was adversely affected by the overvoltage produced by the shut-off pulse in
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the 56-volt line. It was further established by NASA that cesium-contact-engine sub-
system could not tolerate such overvoltage, inherently required for the operation of
the SCR. Such limitation made the use of SCR's incompatible with the design of the
cesium-contact-engine subsystem.

The final design of the power-switching unit evolved as a result of a series of dis-
cussions between NASA and RCA. This design utilized relays in place of all SCR's
in the 28-volt circuits; the switching requirement in the 56-volt circuits was deleted.
This deletion was made possible because the existing ion-engine power supply cir-
cuitry could perform the switching functions. In all other respects, the redesigned
unit was electrically identical to the SCR model. Only minor modifications were
required to the mechanical configuration.

The redesign of the unit was greatly simplified by the removal of the switching re-
quirements for the 56-~volt lines. Latching relays with contact-current-carrying
capacities of 10 amperes were substituted in place of the SCR's in the 28-volt-circuits
for the engine subsystems, the telecommunications subsystem, and the programmer.

Load switching with the relays was accomplished in much the same manner as with
the SCR's. The "on" pulse was fed to the set coil of the relay instead of the gate of
the "on SCR." The "off" pulse was fed to the reset coil instead of the gate of the "off
SCR." Here again, the design was simplified since one relay substituted for two
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SCR's and eight other components, including Zener diodes, capacitors, and resistors.
Isolation diodes for multi-channel operation were preserved wherever required.

Simultaneous operation of the 28-volt lines to the engines was eliminated by positively
disabling one system at the activation of the other by means of relay contact openings.

(2) Squib Firing.

Basically there are two types of squibs to be fired in the SERT spacecraft.
The separation squibs which require four-amperes firing current and the unfold
damper squibs which require two amperes. Adequate protection against false firing
had to be included in the design of their firing circuitry. The squib firing circuitry
is composed of an arming relay, three firing relays, and current limiting resistors.
The arming relay is controlled by a spacecraft pressure switch which prevents false
actuation of the firing circuitry on the ground. The arming relay is disarmed by the
Payload Activate command toprevent false firing during launch. In addition, the
unit has the ability to monitor the Disarm state of the firing circuitry and indicate
its status to the ground station. The normally closed contacts of the firing relays
ground the squibs through the low-resistance limit resistors to prevent noise firing
of the squibs. The limit resistors prevent relay contact burnout and excessive battery
drainage during firing. In addition, the circuits are electrically isolated to prevent
the loss of firing current to parallel squibs in the event of a squib short after firing,
a condition known to occasionally occur. A simplified circuit diagram is shown in
Figure II1-34.
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Figure III-34. Schematic Diagram of the Squib-Firing Circuitry
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(3) Power Monitoring.

In addition to its principal function of switching power 'on' and "off" to the
various subsystems, in response to the programmer or ground station commands,
the power-switching unit provides an accurate measurement of the current being
supplied to any of the major subsystems.

Current supplied by the main battery is measured by a 30-ampere, 50-millivolt
shunt located in its return line. Similarly a 10-ampere 50-millivolt shunt, located
in the return line of the telemetry battery, is used to measure the current supplied
by this battery. The voltage developed at each of the shunts is connected to the tele-
communications subsystem for monitoring.

When external power is used, the main battery shunt senses the current at the 56-
volt loads, while the telemetry battery shunt senses the current in the 28-volt loads.

(4) Voltage Monitoring.

The power-switching unit senses the voltages at the main and telemetry
batteries; these voltages are monitored at the telecommunications subsystem.

(5) Hardline Ground Control.

During flight, the power-switching unit distributes power to the various
subsystems in response to the commands of the programmer. However, for system
testing and pre-flight checkout purposes, the power-switching unit, through a test
umbilical, makes all of its channels available to the ground station. It is in this
manner that any subsystem or combination of subsystems, including the programmer,
can be individually tested.

(6) Detailed Mechanical Description.

The case of the power-switching unit (Figure III-35) is a 3 7/8 -inch by 4 1/2 -
inch by 10 1/2 -inch machined casting with a removable faceplate cover. Connectors
are located on two faces of the casting. Lugs on the 3 7/3 -inch by 4 1/2 -inch face are
used to mount the PSU to the spacecraft baseplate. Other faces are used to mount
the electrical components inside the package.

The electrical components within the PSU are mounted with their most sensitive axes
perpendicular to the axis of thrust of the spacecraft.

Mounting is accomplished by bolting the base of the package to the spacecraft base-
plate and locking the package mounting studs to the spacecraft distributor frame. :
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Figure III-35. Power-Switching Unit

Connectors are located such that external power and test connections are made in a
vertical plane to one side of the package, and spacecraft connections are made to the
top of the package.

G. SENSORY SUBSYSTEM
1. General

The sensory subsystem constitutes basic elements of the SERT spacecraft which
perform some of the critical measurements of the SERT mission.

Included in the sensory subsystem are the sun sensors and radial accelerometer,
which detect the spin rate of the spacecraft, and the ion-beam probe, which measures
the energy characteristics of the beam exhausted by the mercury-bombardment engine.

Monitoring of the radial accelerometer output and the mercury-bombardment-engine
beam are performedthrough the telecommunications subsystem. The outputs ofthe
sun sensors are monitored by a set of two subcarrier oscillators allocated to this purpose.
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2. Sun Sensors
a. General
The sun sensor provides the means of accurately determining spacecraft spin

rate by sensing the passage of the sun once each rotation of the spacecraft. The SERT
program utilizes this measurement in the computation of ion-engine thrust.

b. Functional Description

The sun sensor subsystem (see Figure ITI-36) is a totally redundant
system in that it includes two independent sets of light detection, pulse shaping,
power regulation, and telemetering equipment. Each set of equipment consists of
a light-sensing elementlocated on the outer rim of the spacecraft in such a manner that
a restricted look angle is available for solar detection. The cell excitation is ampli-
fied and shaped with a one-shot multivibrator to modulate a 7.35-ke subcarrier oscil-
lator and, hence, telemeter an accurate pulse-to-pulse time determination to the
ground. A schematic diagram of the sun sensor is given in Figure III-37; a photo is
shown in Figure II-38.

Since the parameter of interest is the time between pulses, the only system require-
ment is that the waveshape of the pulses arriving at the ground station be consistent.
If the same point on the slope of the rise time is used to measure the interval each
time, resolution in time is not dependent upon a fast-rise-time pulse. This method
of interval measurement depends on the short-term consistency of circuit operation
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Figure III-36. Block Diagram Showing the Sun Sensor Link
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Schematic Diagram of the Sun-Sensor Circuit

in the spacecraft and on the ground. System error or jitter is contributed by the

sensor electronics, the telemetry and rf link, the ground station data presentation

equipment, and spacecraft nutation. A system description and error analysis is
given in Paragraph IV-B.
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3. Radial Accelerometer

A radial accelerometer was used on the SERT spacecraft to provide a measure
of the spacecraft rate of change of radial acceleration during the flight operations.
Special conditioning circuitry was designed to process the accelerometer output for
transmission to the ground control station. Since the accelerometer was provided by
NASA, a detailed description is not given in this report.

4. lon-Beam Probe
a. General

The ion-beam probe, developed by the NASA Lewis Research Center, was
designed to measure the density characteristics of the ion-beam exhaust produced
by the mercury-bombardment-engine.

Five temperature-sensitive probe elements are located on a movable arm which
swings out to intercept the neutralized beam of mercury ions being expelled by the
mercury-bombardment engine. The probe actuator system developed by RCA provides
the mechanism by which the probe is swung into position. Since the probe sensing
elements are isolated from ground, signal conditioner circuitry was developed to de-
couple and process the signals through the telecommunications subsystem.

b. Ion-Beam Probe Actuator

(1) General

The probe actuator (shown in Figure III-39) consists of a single housing
and cover which contain all the mechanical and electrical items that make up the
system. The assembly which mounts on the mercury-bombardment-engine arm

is pivoted on a bracket which is fastened to the baseplate. The position of the probe
actuator system relative to the engine is, therefore, fixed; both swing from the
stowed to the extended position together when the engine is released. The unit is
sealed by O-rings and a gasket so that it will retain a positive pressure during
operation. The major components contained in the housing and cover are a motor,
gear train, slip clutch (to prevent accidental overloading of the motor and gear train
during assembly and testing of the actuator system), potentiometer, relay, probe
output shaft, and electrical circuitry. All external materials are either aluminum
alloy or stainless steel.

The electrical circuitry supplies power to the motor and performs the switching
required to move the ion-beam probe through the ion beam and then return it to the
starting position. The second circuit is used for the potentiometer output signal.

The "hot" wires of the probe travel in a plane perpendicular to the ion beam at a
distance of approximately 6-1/2 inches from the engine exhausts.
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Figure I11-39. Ion-Beam Probe and Actuator

(2) Functional Description

The permanent-magnet dc gear motor operates at 6400 revolutions per -
minute. The motor is attached to an integral gear box which reduces the motor output
shaft speed to 8 revolutions per minute. The output shaft, upon which the ion-beam
probe is mounted, is driven through an arc of approximately 80 degrees at a speed
reduced to approximately 0.5 revolutions per minute by the gear train. The probe is
counterbalanced to minimize motor and gear train loading caused by centrifugal forces
of the spinning vehicle. The counter-balanced load and a slip clutch setting of 40 to
50 inch-ounces minimized the problem of selecting a motor. The history of the
motor chosen indicated that the life of the motor under extreme vacuum conditions
far exceeded the requirements of this application. The probe actuator system is
sealed at assembly providing the motor with a positive ambient pressure which
tends to increase the life and reliability of the motor. The motor produces a mini-
mum output torque of 15 inch-ounces at an input voltage of 28 + 2.8 vdec. A
theoretical torque reduction of 3.8:1 between the slip clutch and the motor output shaft
insures the motor against overload.

A short duration signal from the spacecraft programmer starts the probe cycle by
causing the relay to latch. While the relay is in the latched position, power at 28 vdc
drives the motor causing the probe to traverse the ion beam. The microswitches

(S1 and S2) shown in Figure III-40 are in the Ready position at a time before the cycle
begins. When the probe traverse starts, the position of switch S2 changes from that
shown in Figure III-40. At the end of the first half of the cycle, switch S1 is
actuated. This causes the relay coil to become de-energized, which in turn causes
the direction of the power to the motor to be reversed. The probe then traverses the
ion beam in the opposite direction returning to its original position. When the probe
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Figure III-40. Simplified Schematic Diagram of the Beam-Probe Actuator System

arrives at this position, switch S2 is actuated, interrupting the power to the motor
and completing the cycle; the probe-actuator system is then returned to the Ready position.

The relay was selected because of its miniature size and rugged construction. The
relay specifications indicated that it could operate under vibration and shock condi-
tions exceeding those required during environmental testing of the probe actuator
system even though the relay does not operate during these conditions of the actual
mission.

A single-turn potentiometer having a linearity tolerance of + 0.5 percent produces a
signal indicating the position of the probe at any time during the survey. It is mounted
directly to the output shaft so that no relative motion between the probe and the po-
tentiometer is possible. The potentiometer circuit is designed so that a 28-vdc input
signal results in a 5-volt output for the full travel (80 degrees) of the probe. The
potentiometer is mechanically positioned so that the lower limit of the voltage range
occurs at zero volts.

(3) Development

The basic design of the probe actuator system was qualified at the com-
ponent level without difficulty. However, a redesign of the probe by NASA subsequent
to qualification of the actuator system resulted in a threefold increase in the weight of
the probe and its counterweight. The output shaft upon which the probe and counter-
weight are cantilevered failed during the full-level-prototype spacecraft vibration test.
The output shaft was redesigned, eliminating sections having extreme stress concen-
trations and using a material having an ultimate stress three times greater than the
original shaft material. The probe actuator system was then successfully requalified.
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H. ELECTRICAL INTEGRATION

1.  Wiring and Cabling
a. General

The spacecraft wiring and cabling provides all the necessary electrical inter-
connections between the various subsystems. The SERT cabling carries currents
ranging from microampere telemetry signals to 40-ampere power, at potentials from
negative 2000 to positive 5600 volts.

b. Description

The SERT harness consists of three individual harnesses which are separated
to minimize electromagnetic and capacitive coupling. The largest harness carries the
signal functions and distributes the low-level power. A second harness carries the
high-current functions, and a third carries the high voltage.

The harnesses are made from teflon-insulated wire. Conductor sizes range from No.
22 to No. 12. A special teflon-insulated cable is also used for the high-voltage appli-
cations. High-temperature cable is used for coaxial applications.

Connectors are used in the harness for most cable terminations. In some cases,
terminal studs are used as the termination; in other cases, solder terminals are used.
Special potted terminations are used for the high voltage applications.

The harness also includes a number of small component boards which are permanently
wired in. These include a high-current junction on a 1-inch by 2-inch board which
serves as the series tie point of the main 28-volt batteries. A 2-inch by 2-inch board
also is included which serves as a low-level power distribution point. A 2-inch by 3-
inch silver-plated copper plate with many terminals serves as a system ground point.
A 2,5-inch by 2.5~inch board containing 14 diodes serves as a special command back-
up auxiliary board. A bracket holds three stud-type high-current diodes. Also
permanently wired in is a simple resistor-Zener-diode regulator on a 1-inch by 2-
inch board.

c. Development

Early in the SERT program, as the mechanical layout of the spacecraft was
being developed, the basic concept of the harness was established (see Figure III-41).
Harness cabling extends out from a centrally located 10-inch by 14-inch horizontal
rectangle which is located about 12 inches above the center of the baseplate atop the
the distributor frame. As shown in FigureIIl-42, cables which extend from the topside
of the baseplate to the underside pass by way of grooves at the outer edge of the
baseplate., This basic configuration was held throughout the program.
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Another requirement which was studied early in the development program involved
wire size versus current-carrying capacity. An analysis was made of wire tempera-
ture as a function of current loading and wire gauge. Computations were made for a
wire placed in an enclosure at several sink temperatures and were repeated for a
wire exposed to free space. This computation was then repeated for a wire enclosed
in a bundle of wires.

Another important program decision was to use connector interfaces in the wiring be-
tween components. This decision was hased primarily on the convenience offered in
testing and replacement of spacecraft components.

The type of wire insulation material was an additional development requirement that
was studied. The thermal data indicated that an insulation which could withstand
temperatures generally over 100° C should be used. Preliminary information from the
ion-engine designers indicated operation of the engines in the vicinity of 200° C or more.
Also, the insulation should be of a low-outgassing material which would not contaminate
the vacumm in the vicinity of the spacecraft, allowing high-voltage breakdown paths.

The material must also be a good high-voltage insulator with special consideration to
corona.

In selecting the insulation material, special consideration had to be given to flexi-
bility, low-outgassing properties, adhesion between insulator and conductor to mini-
mize the outgassing of entrapped air, operation at relatively high temperatures, and,

Figure III-41. SERT Harness During Figure 11-42. Top View of Prototype
Fabrication on Harness Dummy SERT Spacecraft, T-1B-3
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in high voltage applications, good insulation and corona characteristics. These con-
siderations limited the insulation material selection to polyethylene, teflon, and sili-
cone rubber.

Polyethylene insulation has excellent adhesion, low material outgassing, and good
corona and high-voltage insulation properties. The insulated wire, however , would
be fairly stiff when compared to teflon and silicone rubber. Further, its operation is
limited to 110 °F and many of the spacecraft applications appear to be at a greater
temperature.

Teflon insulation has excelient adhesion, non-measurable material outgassing, me-
dium flexibility, good voltage insulation properties, and operation at temperatures up
to 200°C. The insulated wire, however, would have a cold flow problem at room
temperature and poor corona characteristics. The corona problem, however, would
only exist up to 100,000 feet.

Silicone rubber insulation has excellent flexibility, operation in temperatures up to
150°C, and good high-voltage insulation and good corona characteristics. It would,
however, have medium material outgassing and poor adhesion thus presenting out-
gassing problems.

Because the high voltages would be off until the spacecraft reached hard vacuum, cor-
ona would not be a problem: Teflon, being superior in the other areas of comparison,
was therefore selected as the insulation material. Stranded wire insulated with poly-
thetrafluorethylene (PTFE) resin conforming to type E in the Military Specification
MIL-W-16878D (NAVY) is used for the low-voltage applications.

The special wire for the high-voltage applications is stranded wire with the identical
teflon insulation as the low-voltage wire except that the wall thickness was increased
to 43 mils. The test requirements of the military specification were changed to those
of a wire having a dc voltage rating of 10,000 vdc rather than type E (600 vdc).

The selection of a grounding technique was another early consideration. The sig-
nals carried in the harness ranged from the microampere-range AGC telemetry
current to the 30-ampere load current of the main batteries. In addition, many of the
lines were subject to rather drastic pulsing from ion-engine arcing. In order to help
in the reduction of coupling between wires and in order to minimize loops, a single-
point grounding system was specified. Even test equipment such as the external power
supplies obtained their circuit ground at the spacecraft system ground point.

The wiring specifications which were drawn up in the initial stages of the program,
except for a few minor items, were still valid at the termination of the program.

The most significant change in the basic harness configuration occurred after the

completion of ion-engine development testing with the T-2 spacecraft at the NASA
Lewis Research Center. The ion engines in operation sometimes produced a good deal
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of plasma arc-over to unpredictable points on the spacecraft. Engine arc-over also
produced high-current surges in the feed lines. As a result of the knowledge gained in
the engine testing, the harness and other areas of the spacecraft were modified to
minimize the undersirable effects of the arcing.

. The harness was split into three separate harnesses: the signal harness, the high~-
voltage harness, and the high-current harness. The high-voltage harness contained
all of the interconnections which were at voltage levels greater than 100 volts. The
high-current harness contained all of the interconnections which normally carried
heavy currents and were subject to current surges when either engine arced. The
signal harness contained all of the functions which were not included in the other two
harnesses. The harnesses were routed as far apart as possible, parallel runs were
kept to a minimum, and crossovers were made at right angles in order to minimize
electromagnetic coupling.

During the program, a number of small component boards were included as part of the
harness. Early in the program, the need for a high-current tie point to connect the
two main batteries in series was satisfied with a simple copper bar which inter-
connected three solder terminals. This was mounted on a fiber-glass board which
used a space of 1/2 inch by 1 1/2 inches on the distributor frame.

A silver-plated copper plate containing solder terminals and occupying a space of ap-
proximately 2 inches by 3 inches is utilized as a system grounding point when bolted to
the spacecraft. It contains provisions for terminating about 54- wires.

- A fiber-glass board occupying a space of approximately 1 1/2 inches by 2 inches serves
as a low-level-power distribution point and, as such, becomes a convenient test point.

A simple resistor and Zener diode voltage regulator occupies a space of approximately
1 inch by 2 inches on one of the baseplate ribs. This board provides power for one of
the sun sensors to make the two sun sensors truly redundant.

Three high-current stud-type diodes are mounted on a bracket which bolts to the dis-
tributor frame. They were added to block sneak paths which were detected during
systems testing.

A space of approximately 2 inches by 2 inches contains a fiber-glass board of 14 diodes.
This circuitry was spliced into the harness late in the development program to provide
additional command backup control of the operation of the cesium-contact engine.

Late in the program, a major problem developed in the high-voltage harness. The
connectors which carry the high-voltages arced pin-to-shell across the mating plug

and receptacle face when the spacecraft was subjected to its fast-pumpdown vacuum
qualification tests. This first occurred on prototype spacecraft T-1B-3.

A combined NASA and RCA team effort solved the problem. All of the insulation ma-
terial was cleaned out of a harness plug; the plug was mated to the box receptacle; and the
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connectionwas potted. A total of eight connectors, including three on the mercury-bom-
bardment engine power supplies, one on the neutralizer voltage control unit, and two on
the cesium-~-contact engine power supplies were potted with Stycast 2651-7%, catalyst
No. 9. Because of their extremely high operating temperatures, the two connectors of
the cesium-contact-engine subsystem were potted with Stycast 2662-7%, catalyst No. 9.

The connections were potted off the spacecraft, thus presenting a pigtail wire to be
mated to the appropriate harness wire. This was accomplished using special tech-
niques which converted AMP 'helicon' disconnects and 'window" splices to special
high-voltage splices.

The prototype spacecraft T-1B-3 then qualified when subjected not only to a fast-pump-
down vacuum test but also to a "quick dump' vacuum test. The potting and splicing
techniques looked promising, but had not been proven for flight environments other
than short duration vacuum. A program to evaluate both the splicing and the potting
techniques was immediately initiated.

The evaluation program was successful in developing good, quality techniques to enable
the field splicing of wires which are at high potentials and are required to operate in

the SERT flight environment. The splices proved, with a limited number of test samples,
the capability of operating at a level of 10 kilovolts at sea level, in vacuum, and at all
levels in between including critical pressures.

The evaluation program, however, was marginal in developing a qualified technique for
potting the harness to the high-voltage receptacles. Under stringent repetitive thermal
cycling, failures occurred involving the separation, due to differential thermal
expansion, of the potting from the glass seal at the base of the connector receptacle.

Arcing then occurred through residual air, at partial pressure, which flowed into the
“resulting void. The three most promising room-temperature curing materials tested
were Stycast 2651, Scotchcast 9, and RTV-60 silicone rubber.

RCA did design an open-connector configuration termination which allows a fast
escape path for air and is operable at sea level and in vacuum but not during the short

flight transition period. An engineering model of this configuration was successfully
built and vibration tested.

A complete report of the evaluation program is given in RCA Technical Memorandum

TM-1602, "Evaluation of SERT High-Voltage Terminations and Interconnections
(Reference IM-13).

A further change of note involved the addition of a spring-loaded cover over the "fly-
away'" umbilical connection to guard against the possibility, during test or in flight,
of the ion-engine arcing through the plasma to the exposed connector pins.
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2. Fuse Block
a. General

The development of the SERT fuse block was initiated as a result of the burn—out
of a power-switching unit which was being used in ion-engine development testing at the
NASA Lewis Research Center. The burn-out of the unit occurred due to short circuits
which were created when internal test fuses exploded under vacuum conditions and
scattered metallic debris throughout the PSU.

The fuses are used in the SERT system to prevent the loss of the mission due to the
drain of the batteries from a short in either of the two ion engine subsystems.

b. Functional Description

Twofuses are connected inparallel in the line which feeds 56 vdc to the mercury-
bombardment engine subsystem. Two fuses are similarly connected in the 56-vdc
feed line to the cesium-contact engine subsystem. The fuses are selected so neither
steady state nor current surges emanating from ion-engine arcs will cause the fuses
to blow. A permanent short, however, will blow the fuses within 10 seconds. The
fuses are housed in separate compartmentswithin a completely closed fiber-glass block

(Figure III-44) in order to prevent the contamination of the spacecraft in the event of
blown fuses.

c. Development

Standard ceramic 30-ampereaircraft fuses were being used inthe power switch-
ing unit at the time of the fuse explosion. These fuses were intended for use during
electrical testing only and would have been removed before flight. The evidence
showed that the metallic parts had been heated, possibly even to a vapor, when the
debris was scattered throughout the component. Judging from the type of debris, the
cause of the explosion was thought to be from an overvoltage condition rather than the
normal blowing of the fuse. In support of this, the fuse vendor insisted that the fuses
would explode in vacuum only under over-voltage conditions. The aircraft-type fuse
was therefore considered to be unsuitable for use in this application.

A survey of the market failed to turn up a space-proven fuse; one that would not only
meet the rigors of space in normal operation but also would not explode in vacuum
whether due to overcurrent or overvoltage or both. Low current fuses, using
Pyrofuze wire encased in a fiber-glass block, had been developed by RCA for use

in the Ranger program*. The Ranger fuses encouraged further development in this
area.

*The Ranger TV Subsystem was designed and built by the Astro-Electronics Division
of RCA for the Jet Propulsion Laboratories of the California Institute of Technology
under NASA Contract No. NAS 7-100 JPL Contract No 950137).
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Figure III-44. Fuse Block

Pyrofuze wire is a proprietary composite wire having a core of aluminum and a sheath
of palladium in the ratio of 1.25to 1byweight, respectively. When heated to 680°C,
an exothermic chemical reaction, deflagration, is initiated which propagates along the

wire without the need for external power

or oxidizer. The wire melts, since tempera-

tures up to 2800°C are generated, opening the circuit positively and rapidly.




The fuse specifications were jointly drawn up by NASA and RCA such that each fuse
would be capable of carrying a current of 60 amperes continuously for 5 hours at
50°C in vacuum, while 80 amperes will blow the fuses within 90 seconds at 10°C.

Samples of the Pyrofuze wire of various diameters were made. These samples were
designed to operate to the specifications. These were tested at RCA, and resulted in
a fuse which consisted of a two~inch active length of LoR(a 0. 050-inch diameter Pyro-
fuze wire when used with particularly-sized end studs).

The end studs were designed to minimize the effects of the thermal environment and
the current-carrying losses of the connecting wire and the studs themselves, such
that the active length of Pyrofuze wire was only sensitive to its current-carrying
losses. The end studs were also designed to withstand the extreme temperatures
which develop when a fuse blows.

Each fuse is positioned within an alumina tube to contain the deflagration products.

In addition, each fuse is housed in a separate chamber in a fiber-glass block to iso-
late any outgassing material. The fiber-glass block also provides high-voltage isola-
tion of the circuitry from ground.

In addition to the qualification testing of the prototype model and acceptance testing
of the flight models (both of which are non-destructive), one of the flight model units
was selected at random and successfully subjected to the destructive test.
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SECTION IV
SPACECRAFT DYNAMICS

A. INTRODUCTION

The SERT spacecraft must be stabilized to provide a frame of reference against
which the thrust of the ion engines can be measured. For reasons which shall be dis-
cussed in this section, spin-stabilization was chosen. The spin, at a rate of approxi-
mately 100 rpm, is imparted to the spacecraft before booster separation by spin-up
rockets attached to the Scout fourth stage. After separation, the increase in spin-axis
moment of inertia resulting from the extension of the ion engines causes a decrease
in the spin rate of approximately 15 percent.

Disturbance torques such as those introduced by separation forces or by extension of
the engines may create an angular velocity about an axis other than the original spin
axis. As a result, the spacecraft nutates or wobbles in a conical pattern about the
angular momentum vector of the spacecraft. To reduce the nutation to a low value
(less than 1 degree) so that its effect on spin-rate determination is minimized, tuned
energy-absorption mass (TEAM) precession dampers are mounted on SERT.

Spin-stabilization was particularly desirable for SERT because the method offers ad-
vantages not otherwise achievable in as simple a fashion. The advantages are:

(1) A simple approach to the measurement of engine thrust through change of spin
rate is established. Alternate approaches would involve the use of a stabilized
platform or an active attitude-control system, which would greatly increase
complexity and weight.

(2) The orientation control of the spin axis thus achieved permits the measure-
ment of spin rate, and hence the determination of engine thrust with simple
instrumentation (sun sensors).

(3) The attitude control afforded by spin stabilization permits therf energy tobe
concentrated in the lower hemisphere beneath the spacecraft baseplate, re-
ducing the rf power requirement below that needed for isotropic radiation.
During flight, all of the ground stations are in this lower hemisphere.

(4) Spin provides the centrifugal force necessary to extend the ion engines.




(5) The angular momentum of the spinning vehicle provides a buffer against
unwanted torques, including those generated by the engine thrust about axes
transverse to the spin axis.

The ratio of engines-extended to engines-folded spin rate is given by the relationship

N I
ext _ sp(folded)

0.826
N .
folded Isp(ext)

where

N is the spin rate in rpm and

ISp is the spin-axis moment of inertia in slug-—ftz.

Thus, an engines-extended spin rate of 82.6 rpm would result from an initial rate of
100 rpm.

B. MEASUREMENT OF ENGINE THRUST

1. General

During flight, the SERT ion engines are positioned such that their thrust axes are
normal to the spacecraft spin-axis. This condition permits the thrust of the engines to
be measured by its effect on spacecraft spin rate. Extension of the engines places the
thrust axes at an extended moment arm providing increased sensitivity of the space-
craft spin rate to engine thrust.

The geometry necessary to determine the relationships between spin rate change and
thrust are shown in Figure IV-1. The equation for spin-rate change is

F Yeng
W=7 ;

where

w is the spin rate;

F is the engine thrust;

Y is the thrust moment arm; and

eng
I is the spin-axis moment of inertia (engines extended).
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Figure IV-1.
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X, is the engine reference axis (- to F);
Y, is the engine reference axis ( || to F);
Zp is the spin axis (principal axis);

Wgp is the spin vector;

F  is the engine thrust vector; and

» Z . .
eng’ eng are coordinates of the engine force vector.

Spin-Rate and Engine-Thrust Geometry



The relationship between spin-period change and thrust is given by the equation*

2
. TIN ‘ AT
- H
1.80 x 106 Y At
eng
where
F is thrust in millipounds;
Y is thrust moment arm in feet;
eng
. . . . .. 2
I is spin axis moment of inertia in slug ft ;
N is spin rate in rpm;

AT is change in spin period in microseconds; and

At is time increment in seconds.

Anticipated values of period rate of change for the SERT I flight are, for I = 10.5
slug ft2 and N = 90 rpm:

Spin-Period Rate

Thrust Moment Arm of Change

Engine (millipounds) (inches) (4 sec/sec)
Cesium-contact 1.6 21.75 19.6
Mercury-bombardment 6.0 22.0 74.0

The relationship between rate of change of spin period and engine thrust for a 22-inch
moment arm is plotted in Figure IV-2,

*See Appendix E for the development of the equation
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2.  Thrust Measurement Systems

Spin rate may be determined to varying degrees of accuracy by any one of the
following techniques incorporated in the SERT I system:

a.

Sun Sensor System

This system for detecting spin rate employs, as its basic instrument, the sun
sensor, which is designed to detect the passage of the sun once each revolution
of the spacecraft. The train of pulses generated at successive sun crossings
is telemetered to the ground station where it activates a set of counters to
obtain continuous readings of spacecraft spin period.

Radial Accelerometer System

This system employs a highly-accurate accelerometer to detect spacecraft
centrifugal acceleration. The frequency or digital output of the accelerometer
directly modulates the rf carrier and is transmitted to the ground where
special data handling equipment converts this signal to analog spin-rate
information.




¢. Ground Receiver AGC

This technique, intended as a back-up in the event of failure of the other
systems, takes advantage of the fluctuation in the ground receiver AGC
(automatic gain control) voltage created by the asymmetry of the spacecraft
antenna pattern. Values of spin rate accurate to several percent may be
obtained with this approach after several minutes of data smoothing; further
treatment and longer integration of the data will provide increased accuracy.

Further discussion of the sun sensor system is presented below. The radial ac-
celerometer is not discussed further since it is outside the area of RCA responsibility;
however, for completeness, let it suffice to say that the input axis of the instrument

is aligned along a radial from the spacecraft center of mass (c.m.) in order to detect
the largest component of centrifugal acceleration while minimizing inputs due to
spin-axis nutation.

A block diagram of the sun sensor system is shown in Figure IV-3. The part of the
system lying within the spacecraft is redundant in all active electronics, with the
antenna and its diplexing networks being completely passive elements. Redundancy
is also provided through the ground receiving and discriminating system, although
audio signal recording must be depended upon to provide back-up in the event of
ground equipment failure.

The sun sensor, described in detail in Paragraph III-1 G.2, consists of a silicon solar
cell placed behind a narrow (1 degree wide) slit aligned parallel to the spacecraft spin
axis. A sketch of the sun sensor's geometric relationship is given in Figure IV-4.
Once during every revolution of the spacecraft, the sun's rays impinging on the cell
produce a voltage which triggers a one-shot multivibrator. The rectangular pulse
output of this circuit is highly reproducible both in shape and magnitude; hence, time
measurements between successive pulses provide an excellent measure of the space-
craft spin rate.

The sun-sensor slit subtends an angle in the plane of the spin axis between approximately
75 degrees above and 30 degrees below the baseplate plane (normal to the spin axis).
The sun sensor system will, therefore, operate whenever the sun lies within this

angular range. The launch trajectory and time of launch must be selected so that,

after separation, the angle between the inertially-fixed spin axis and the line to the

sun meets the specified requirements. The trajectory and launch "window' may be
selected to meet tighter requirements to reduce the cyclic modulation of spin period
which arises from spin-axis nutation.

" The sun-sensor output pulse is fed to a voltage-controlled subcarrier oscillator, whose
output is summed with other telemetry signals before modulating the transmitter. As
shown in Figure IV-3, the rf signals are transmitted to the ground station, where the
discriminated subcarrier signals are fed to the spin-rate rack. A switch is provided
so that the signal from either of the two redundant sun sensors may be selected.
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The operation of the spin-rate rack is fully covered in Section V-D. Briefly, this
equipment consists of an electronics board, two counters, a dual counter coupler, a
printer, and a timing clock. The electronics contains a Schmitt trigger and flip-flop
circuitry for a divide-by-ten function (optional). The two counters and coupler are
arranged so that each pulse starts one counter while stopping the other. The duration
count of each counter, alternately, is recorded on the printer along with running-time
from the clock, thus providing a continuous record of successive spin periods. The
spin-rate rack is arranged to record to the nearest microsecond.

3. Thrust Measurement Errors

Errors in the spin-period measurement arise either within the system itself or
from the dynamics of the spinning spacecraft. System errors may be seen as
developing within the sun sensor electronics, communications link, and spin-rate rack.
An experimental study to measure system error was conducted on an analog system
consisting of a light source, sun sensor, subcarrier oscillator, discriminator, counter,
and printer (refer to Appendix F). With the transmitter-to-receiver error derived
analytically, a total 3-sigma error in period is broken down as follows:

Sun Sensor 9 microseconds
SCO - Discriminator 7 microseconds
Communications path 1 microsecond
Spin Rate Rack 20 microseconds
Total (root square sum) 23 microseconds

IV-8




This uncertainty over one period would cause an acceleration measurement error,

greater than that expected for the cesium-contact engine, of 19.6 usec/sec. When

handled statistically over a large number of cycles, however, the error will reduce
quite rapidly, as expressed by the following equation (refer to Appendix K):

) 6 Ysom
LR R Rt

10 cycles of mean-square fit would then be 0.25 usec/sec at 90 rpm,
or one percent of the acceleration expected due to cesium-contact-engine thrust.

The error aft

nwr n
oL v

Errors in thrust measurement related to the dynamics of the spinning vehicle may
arise from a number of sources (refer to Appendixes G and H). Briefly, the major errors
investigated are:

a. Thrust-axis misalignment,

b. Thrust-axis offset,

c. Moment-of-inertia change due to thermal expansion, and
d. Nutation.

From past experience it was decided that effects of micrometeorite impacts, magnetic
field interactions, and differential gravity torques were too small to consider.

The largest source of error in spin-period measurement is spin-axis nutation. For
SERT, the maximum period-error per cycle can be as large as 350 usec at steady-
state nutation, a sun-spin axis angle of 70 degrees, and a spin rate of 90 rpm (refer to
Appendix J). As discussed in Appendix K, this data can also be handled statistically,
although after one minute of simple averaging the error in acceleration measurement
would rapidly fall below one percent of that expected due to the thrust of the cesium-
contact engine.

The largest steady-state error determined analytically was 2.25 percent of the expected
thrust (1.6 millipounds) of the cesium-contact engine. This value was the result of
spacecraft expansion due to an assumed 50°C temperature rise. However, since this
effect is not random, and temperature distribution data is available, the thrust
uncertainty can be reduced to less than 1/2 percent of the expected cesium-contact-
engine thrust after a correction is applied. Large bias errors can also be anticipated
during nutation damping, but these are limited to the first several minutes after
separation and engine extension.
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An additional error of great significance is that caused by the moment arm itself.
While center-of-gravity, spin axis, and geometrical measurements can be made
which provide moment arm accuracies within several tenths of a percent, the great-
est uncertainty is in the position of the total thrust vector within the ion beam.

It is hard to conceive of this error exceeding 5 percent, although estimates could
best be provided by the ion-engine developers.

C. THE PRECESSION DAMPER

1. Generadl

The SERT spacecraft design included two (for redundancy) tuned energy-absorp-
tion mass (TEAM) precession dampers to remove excess nutational motion from the
spinning vehicle. The TEAM precession dampers were developed for NASA as part of
the TIROS satellite* program (Reference IV-1). In TEAM, the absorbing mass does
not itself absorb energy, but by its motion it produces friction which dissipates energy
in the form of heat. Since the motion of the TEAM mass is due to the motion of the
spacecraft, a one-way energy flow occurs (conversion of Kinetic energy to heat). This
energy conversion process continues until no more precession is present and the body
spins about its maximum moment of inertia.

2. Functional Description

The TEAM precession damper, shown in Figure IV-5, consists of an enclosed

mechanism, which is mounted parallel to the spin axis at the maximum possible
radial distance.

The mechanism consists of a supporting structure housing a moving mass. The mass

is confined to roll (on bearings) along a curved track or rod. A means of varying the
curvature of the rod is provided in order that the natural frequency of oscillation of

the mass can be tuned to the forcing frequency encountered during nutation of the vehicle,
as the mass moves back and forth along the rod. Since an unfavorable inertia ratio
(which augments the build-up of nutation) exists during the boost period, the precession
damper mechanism is provided with a metallic pin to cage the mass during launch. At
separation of the spacecraft from the launch vehicle, squibs are fired which release

the caging pin, allowing the sliding mass to move back and forth along the rod. Firing
of the squibs by ground command is provided as back-up to the programmed operation.

An oscillating acceleration field, set up by any major nutation of the vehicle, causes the
sliding mass to traverse back and forth on the curved rod. This motion produces
friction, which dissipates mechanical energy in the form of heat. Since the conversion

*The TIROS satellite was designed and built by the Astro-Electronics Division of
RCA for NASA under contract No. NAS 5-3173.
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Figure IV-5. Precession-Damping Mechanism

of kinetic energy to heat is a one-way energy flow, the energy associated with the
nutation is continuously dissipated until the response threshold of the damper is
reached. The sliding mass then ceases to move and the dissipation of nutation, now
dependent upon flexure of the structure alone, will continue at a much lower rate.

Ultimately, the spacecraft reaches a state of nearly uniform spin about its axis of
maximum moment of inertia, with the sliding mass at rest at, or near, the center of
the monorail.

3. Design Analysis

Va

This design analysis section contains a brief analytical background of the TEAM
precession damper. To make the equations amenable to simple solution, it is assumed
that the moments of inertia about the principal axes transverse to the spin axis are
equivalent.

The geometry shown in Figure IV-6 (a coordinate system X1, X9, X3, fixed to the
spacecraft) was used in the method summarized here. Assume rotation about one axis
(Xg) fixed to the spacecraft while the entire spacecraft coordinate system rotates about
a line fixed in space. This line is in the direction of the total angular momentum of
the spacecraft at the instant of release from the final stage. These two rotations may
be combined into one angular velocity which does not coincide with either the angular
momentum vector or the spacecraft spin axis.
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Before engine thrust can be measured, it is necessary to reduce the angle between the )
instantaneous velocity vector (w) and the spacecraft spin axis (X,)) to a small
value. If energy is removed from the system while a constant momentum is main-

tained, the desired alignment of the spacecraft spin axis and instantaneous angular
velocity will take place.

The following equations were used for determining the size of a TEAM precession
damper and its limitations:

The forcing frequency to which the TEAM is tuned is

(I3-11) (I3-Ip)  Jwgl av-1

¥~ K |, =
L I
where

w .is the forcing frequency in radians/sec;

Wy’ w2’ w3 are the components of the spacecraft's instantaneous veloc-

ity vectors resolved into the spacecraft fixed coordinates
in radians/sec; and

Il’ 12, I3 are the principal moments of inertia of the spacecraft. "t
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The natural frequency of TEAM is

= T
. “0 T “3A/R av-2)

where r is the distance of rod from the center of mass of the spacecraft, and R is the
radius of rod, from which tuning is achieved when

R (Iv-3)

The energy which must be dissipated to make the spacecraft reduce its precession
angle from 6 to 6 is

~ 1 Ip _ 2[ 2 2
AT > I [lp 1,:|(w3) Eel) (62) Av-4)
where
. AT is the change in energy of the spacecraft required to

produce a change of precession angle from 67 to 92;

81, 62 are the maximum and minimum angle in radians that the X4
axis, fixed in the spacecraft, makes with the total
angular-momentum vector L;

L is the total angular momentum vector fixed in inertia
space; and

1, ¥ /11 T

For nearly perfect tuning, the loss of energy per cycle is

v-95)

f is the friction force acting on damper traveling
mass, in pounds, and

X3) max is the half amplitude of motion, in inches.

This rate of energy loss is assumed to hold until the amplitude of precession, 8,
reduces to a value such that

av-6)

a
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where
8 is the angle in radians that the X3 axis, fixed in the spacecraft,

makes with the total angular momentum vector, L, and
u is the coefficient of friction (rolling).

Equations (IV-1) through (IV-6) are enough to establish design parameters and allow
estimation of the time-to-damp precession to a value specified by Equation (IV~6).
This equation is a relation involving Equations (IV-1), (IV-4), and (IV-5). It is
sufficient for many applications in which the angle of precession is several times
larger than the threshold value of the damper.

4. SERT T-3 Nutation Damping Characteristics

Tuning of the precession dampers for the T-3 spacecraft was calculated from
Equation (IV-3)
r 12.8

= = = 20 h .
R=%2Z = §.1068 120 1inches

This radius of curvature is obtained by tuning the damper in a 1-g field for which the
period of oscillation is given by

P =/— = 3.50 secs.

The time-to-damp characteristics are expressed in Figure IV-4,

The rolling-friction threshold-nutation angle is obtained from Equation (IV-6):

. 0025 ~
= —— = 0.16

eroll (1-K2) 16 degrees,

and the static friction threshold, which determines the angle at which the damper will

again operate after having been stopped, is

est = 0.32 degrees (twice eroll)'

The friction coefficients, u, were obtained from experiments performed under the
TIROS program.

REFERENCE

v-1 TIROS I Meteorological Satellite System, Final Comprehensive Technical
Report, (Volume II) Prepared for the U.S. Army Research and Develop-
ment Laboratories and NASA by the Astro-Electronics Division of RCA,
Jul. 1, 1961 :
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SECTION V

GROUND EQUIPMENT DESIGN
AND DEVELOPMENT

A. GENERAL

The SERT ground equipment consists of three basic complexes of electronic equip-
ment which control and monitor the operation of the SERT spacecraft during all phases
of its testing and its flight performance. The ground equipment complexes include
(1) the RCA Laboratory Test Station used in the electrical operation of the spacecraft
at AED, (2) the Wallops Island Launch Checkout Equipment used in the electrical
operation of the spacecraft during prelaunch testing at the NASA Lewis Research
Center and at the Wallops Island launch site, and (3) the Flight Monitoring and Control
Equipment used for monitoring and control of the spacecraft during launch and flight
operations at Wallops Island and the Bermuda tracking station. The RCA Laboratory
Test Station served as a model for the SERT Electronics Van, which is a part of the
Wallops Island Launch Checkout Equipment.

The following paragraphs provide a description of the basic functional and physical

characteristics of the SERT ground equipment and a history of its design and
development.

B. RCA LABORATORY TEST STATION

1.  Description

The RCA Laboratory Test Station consists of a semi-permanent electronics installa-
tion in the clean-room facility at AED. The installation consists of nine racks of
equipment, portable test equipment, and cabling that connects the clean-room area

with the AED environmental test area.” Detailed photographs of the major special
equipment are presented in Figures V-1, V-2, and V-3. The nine racks of equipment
can be grouped into the followin_g functional categories:

Checkout Control Equipment Rack (1 rack—Rack 1, Figure V-1)

Telemetry Receiving and Decommutation Equipment Racks (3 racks—Racks
4, 5, and 6, Figures V-2 and V-3)

c. Data Presentation and Recording Equipment Racks (4 racks—Rack 2 shown in
Figure V-1 and Rack 7 in Figure V-8; the other two racks consist mainly of
standard commercial equipment.)

d. Command Test Equipment Rack (1 rack—Rack 5, Figure V-2)
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Table V-1 lists the equipment contained in the RCA Laboratory Test Station. The test
station is used to energize and control the operation of the SERT spacecraft and
monitor its performance during electrical debugging operations and during all phases
of qualification and acceptance testing at AED.

Electrical debugging of the spacecraft is performed within a fence enclosure in the
clean-room area. The electrically-interlocked fence protects the test personnel from
the spacecraft high voltages which exist during testing. Adjacent to the fence enclosure
are the racks of equipment and special portable test devices employed in the test
operation.

Environmental qualification and acceptance testing of the SERT spacecraft is con-
ducted at facilities remote from the clean-room area. Operation of the spacecraft at
the remote environmental test location is accomplished using the test equipment
located in the clean-room area. Cabling connects the clean-room area with the AED
environmental test area.

2. Development

The final configuration of the RCA Test Station closely resembles its original
design concept. During the development of the station a number of improvements
were made to facilitate its use. One major improvement was the addition of a
magnetic tape recorder and two 8-channel Sanborn recorders to the data presentation
and recording equipment. This addition provided the equipment with the capability
to store test data on tape and to provide a continuous display of decommutated data.
Two other changes made to the test station included replacement of the sound-powered
phone intercom system with an audio system capable of driving the newly-acquired
magnetic tape recorder so that voice observations could be recorded and addition of
a subcarrier oscillator calibration box to test and calibrate the fm subcarrier oscil -
lators. Other minor pieces of equipment were added to facilitate (1) measurement of
the rf transmitted power, (2) performance of tests on the neutralizer voltage control
unit with the unit mounted on the spacecraft, and (3) performance of the squib-firing
tests. The soundness of the basic design of the test station (and the changes that were

made to it) was verified by extended use of the station throughout the 2 1/2-year SERT
program.

The test station equipment racks are described in detail in the following paragraphs.
A block diagram of the RCA Laboratory Test Station is shown in Figure V4.




TABLE V-1. RCA LABORATORY TEST STATION EQUIPMENT RACKS

Unit No. of Units

Checkout Control Equipment Rack

Control Panel 1
56 V Power Supply
28 V Power Supply 1

-t

Telemetry Receiving and
Decommutation Equipment Racks

Telemetry Monitor Scope

Monitor Scope Power Supply

VHF Telemetry Receivers
Telemetry Display Unit

Telemetry Selection Panel
Precision Subcarrier Discriminators
Channel Selector

MOC Output Converter

MCT Control Translator

MCS Commutator Channel Selector
MIS Input Shaper

Patch Panel

MPC Power Control

MPS Power Supply

Telemetry Simulator

b e = e e b R NN

Data Presentation and Recording
Equipment Racks

Magnetic Tape Recorder
18-Channel Recorders
Chart Recorder

High Speed Oscillograph
MMU Meters

[ N

Command Test Equipment Rack

VHF Signal Generator
Electronic Counter
Frequency Counter
Time Interval Unit
Command Programmer

T
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3. Checkout Control Equipment Rack
a. General

The SERT checkout control unit was designed to simulate the spacecraft bat-
tery power source and to provide a facility for hardline control of the spacecraft opera-
tion and hardline monitoring of performance during testing. The checkout control unit
consists of a control panel and two power supplies installed in a standard six-foot by
nineteen-inch electronics rack. All the hardline interconnections between the space-
craft and the control panel are listed in RCA Document S-19 "SERT Umbilical Require-

L
ments" {Reference V-1).

b. Control Panel

The control panel provides the facility for energizing and de-energizing all of
the spacecraft subsystems and for direct monitoring of the operation of each of the sub-
systems by means of hardwire connections. It controls and monitors the external
spacecraft power, the telemetry equipment, the rf transmission equipment, miscel-
laneous components, and the two independent ion engine subsystems.

The control panel also arms and fires all spacecraft squibs, enables stepper control of
the neutralizer voltage control unit, externally drives the programmer at a rate which
is adjustable by panel control, provides information on the mode of the auxiliary com-
mand unit, tracks the programmer with a counter and accomplishes various other testing
operations. An output pulse every ten counts of the programmer is also provided for
data recording use.

The control panel has the facility to duplicate the function of the launch control panel
which enables it to simulate the launch mode of spacecraft operation during testing.
The operation of the control panel in the external mode enables it to supply complete
power to the external spacecraft and to monitor and control specific spacecraft functions.

c. Power Supplies

The external power is supplied by two power supply units in the checkout con-
trol rack. Both units have a power capability exceeding the anticipated demand. This
is done to overcome the considerable line drop that develops during remote-location
testing, The unit which is normally used to supply up to 26 amperes to the spacecraft
at 56 vdc has the capability of supplying 30 amperes at 80 vdc; the other unit which is
used to supply up to 13 amperes at 28 vdc has the capability of supplying 15 amperes
at 36 vdc. Remote sensing is used to provide the required load regulation. The 28-
volt power supply also provides power for the control panel.



4. Telemetry Receiving and Decommutation Equipment Racks
a. General
The telemetry receiving and decommutation equipment receives the telemetry
signals from SERT and prepares them for visual presentation. This equipment, which

consists of telemetry receivers, discriminators, and a decommutator, is installed in
three 6-foot by 19-inch electronics racks.

b. Telemetry Receiving Equipment

The telemetry receiving equipment consists of two standard fm telemetry re-
ceivers with plug-in crystals for optimal local-oscillator frequency control, a telem-
etry display unit, and a telemetry selection panel. The multiplexed rf output from the
spacecraft is fed to the two receivers. The telemetry display unit displays each car-
rier and its associated deviation on a CRT. The receivers provide a mixed audio out-
put to the telemetry selection panel; the outputs are also recorded on a magnetic tape
recorder.

¢. Telemetry Discriminators

The mixed telemetry signals are demodulated by four precision subcarrier
discriminators. The particular type of discriminator employed permits selection of
the frequency to be demodulated by use of a plug-in unit. The four discriminators with
plug-in units, to IRIG standards, provide demodulation of the SERT telemetry subcar-
riers; one at 10.5 ke, one at 7.35 ke, and two at 1.7 ke. The discriminators are con-
nected into the test station as shown in Figure V-4.

d. Telemetry Decommutators

The decommutation of the SERT PAM pulse train is accomplished by a decom-
mutation complex mounted in two 6-foot by 19-inch electronics racks. The complex
provides decommutation of any 16 of the 43 data channels of the SERT pulse train by
use of a snap-in patchboard. In normal operation, channel selection is accomplished
by use of pre-assembled patchboards. The display oscilloscope used in the decommu-
tator complex presents a bar display of the commutated PAM pulse train on the selec-
ted telemetry channel which is being decommutated. The decommutation system has a
memory circuit which allows the loss of up to eight channels without a loss in sync.
The telemetry simulator included in the complex provides a calibrated mixed signal
equivalent to the output of the spacecraft telemetry mixers, Accelerometer telemetry is
not included in this signal.
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The telemetry selection panel selects the data that will be shown on the data presenta-
tion equipment. The panel provides selection of either the mixed audio telemetry sig-
nal from the receivers or the corresponding signal from the spacecraft telemetry mixers
via the hardline. The telemetry signal which is selected is further processed by inde-
pendent selectors to discriminate between the commutated data, (10.5 kc) and the spin-
rate data (7.35 kec) of either of the two rf systems. The 1.7 kc data of both rf sys-
tems is processed straight through for discrimination.

5. Data Presentation and Recording Equipment Racks
The presentation and recording of the SERT telemetry data is accomplished with
an electronics complex which includes a 14-channel magnetic-tape recorder, two 8-

channel Sanborn recorders, a pen recorder, a 14-channel oscillograph, and 16 MMU
meters. This equipment is mounted in four six-foot by nineteen-inch electronics racks.

a. Magnetic Tape Recorder

The magnetic tape recorder was provided as GFE to the RCA test station by
NASA Lewis Research Center. Thetape recorder has been used throughout the program
to record spacecraft telemetry, timing,and the voice comments of the test personnel.

The telemetry information taken from the hardline output taps of each telemetry mixer
and the outputs of each test station receiver is recorded on four channels of the tape
recorder. The test station has the provision for playing back the recorded telemetry
through the discrimination and decommutation equipment.

The recorded voice information consists of all comments which are made by the test
personnel from the various intercom stations. The test station is setup to play back
this channel into a speaker.

The magnetic tape recorder was not included in the original test station. During the
integration of spacecraft T-2 (the electrical model) it was found that a recording system

of greater capability and capacity than the 14-channel oscillograph would greatly facili-
tate the testing operation.

b. Strip-Chart Recorders

The Strip-Chart recorders areused to present a continuous graphical display of
the commutated telemetry data and the spacecraft programmer profile; thelatter is used
as a timing reference. Seven of the 8 channels of each recorder are used for data and
one for programmer profile. Thus, at least 14 channels of real-time decommutated data
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arecontinuously presented during spacecraft testing. A continuous graphical presentation

of all of the commutated data is presented by playing back the taped telemetry through
the decommutation equipment.

These recorders were not included in the original test station. They were later sup-

plied from the RCA capital equipment pool in order to facilitate post-test data play-
back and analysis.

c¢. Pen Recorder

A two-channel pen recorder is used to presenta continuous trackof the space-
craft programmer eventprofile, and the command backup confirmation profilebothin
real time and from telemetry playback. One of the two timing pens of the recorder
was modified to accept a signal every tenth pulse of the spacecraft programmer.

This unit was part of the original test station and was used frequently in the early part
of the program. It, however, had to be redesigned by RCA in order to eliminate the
frequent occurrence of gears stripping. It was also found that if the unit was not used
every day, maintenance was necessary to keep the pens from clogging. The unit was
used very little in the latter stages of the SERT program.

d. Oscillograph
The 14-channel oscillograph is used to record any data which is desired in
real time. The test station is wired such that all the telemetry from discriminator
outputs, decommutated channels, and hardline spacecraft test points can be presented.
e. MMU Meters
The 16 MMU meters (located in the command test equipment rack) are princi-
pally used to provide a real-time presentation of the telemetry channels which have
been selected for real-time decommutation. The meters are also used for the calibra-

tion of the spacecraft telemetry signal conditioner.

Throughout the SERT program, the MMU meters proved to be a valuable real-time data
tool in the electrical integration of the SERT spacecratft.

6. Command Test Equipment Rack

The command test equipment is used during all phases of electrical integration to
check out the command and control subsystem. The command test equipment consists
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of a VHF signal generator, a command programmer, and a counter mounted in a six-
foot by nineteen-inch electronics rack. The VHF signal generator serves as the
148.26-megacycle carrier generator; the counter is used to set the carrier; and the
command programmer is used to modulate the signal generator output. The command
programmer generates the coded audio commands required for command subsystem
operation in response to individual push-button switches. The programmer also has
facilities for the generation of noise in place of, or in addition to, the coded modulation.

The command test equipment has performed satisfactorily throughout the SERT
program.

7. General Test and Checkout Equipment
a. General

During the three-year SERT program, a number of pieces of portable test
equipment have been used to supplement the function of rack-mounted test equipment.
This equipment was either obtained from the test-equipment pool, purchased, prov1ded
as GFE, or designed and built by the integration personnel.

The equipment includes telemetry calibration boxes, ion-engine dummy loads, a
mercury-bombardment-engine neutralization simulator, battery-charger and burn-off
box, squib-firing dummy loads, an rf dummy load box, rf measuring equipment,
oscilloscopes, multimeters, and many other portable pieces. In addition, many pleces
of test station intercabling were made.

b. Telemetry Calibration Equipment

The entire telemetry system is tested using highly accurate signals supplied
by a telemetry signal simulator and a subcarrier oscillator calibration (SCO CAL)
box. The telemetry signal simulator is physically mounted in a small suitcase. It
plugs into the spacecraft signal conditioner and provides a full range of voltages to

each of the 90 commutated telemetry channels. The signals are processed throughthe =~~~

spacecraft communications telemetry subsystems and sent to the ground test station
where they are decommutated to calibrate each of the commutated telemetry channels.

The SCO CAL box which is designed to plug into the spacecraft telemetry mixers pro-
vides calibration voltages corresponding to center-frequency and band-edge modula-
tion of each of the three fm subcarrier oscillators. The signals are processed through
the spacecraft telecommunications subsystems. The telemetry subcarrier signals are
then demodulated, discriminated, and the frequencies read on a counter.
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c¢. Jon Engine Dummy Loads

Since the ion engines are operable only in a vacuum, substitute dummy loads
were required during all non-vacuum testing. These loads which were supplied as
GFE performed quite adequately during testing. It is noteworthy to mention that the
function-monitoring meters on the mercury-bombardment-engine load proved to be
very helpful in the integration of the ion-engine subsystem.

The telemetry-data outputs of the ion engine subsystems were monitored with a dummy
signal conditioner in order to establish their intercompatibility before system inte-

gration. This box was very useful early in the program when interface problems were
being solved.

d. Mercury-Bombardment-Engine Neutralization Simulator

This equipment was designed to simulate the neutralization of the mercury-
~ bombardment engine, a condition which is necessary in order to systems integrate the
neutralizer voltage control unit (NVCU). The load current is regulated while the NVCU
switches in loads which vary the load voltage from 0 to 1200 vdc by the use of a 5000~
volt power supply and high-power series resistance network. A spark gap protects
the spacecraft from overvoltage.

e. RF Dummy Load Box

An rf dummy load was designed to substitute for the spacecraft transmission
antennas during system testing. It consists of a separate load circuit for each an-
tenna. Each load circuit consists of a one-quarter wavelength impedance transforma-
tion line to match 95 and 50 ohms, an rf signal sampler, and a 5-watt 50-ohm load.
These matched loads were substituted for the four antennas during much of the space-
craft system testing. Sampling ports were provided to permit rf power measurement.

f. Squib Dummy Load Box

A box was designed and fabricated to simulate loads for the spacecraft squib
firing circuits, to provide lights for visual confirmation of firings, and to provide out-
puts for recording of firings. The simulated squib loads are fuses. Indicators on the
squib dummy load box light upon the burn out of the fuse and stay on during the one-
second firing time. The recorder outputs were used during spacecraft vibration testing
to monitor possible firing relay closures.
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C. WALLOPS ISLAND LAUNCH CHECKOUT EQUIPMENT

1. General

The Wallops Island launch checkout equipment is used to operate and evaluate the
SERT spacecraft during the four-week preparation period before launch and during
launch countdown.The equipment consists of an electronics van and sets of rack-mounted
equipment installed in the blockhouse, the launch tower terminal building, and the top
of the launch tower. See Figure V-5 for a functional block diagram of the launch check-
out equipment.

2. Electronics Van

The electronics van is a mobile systems test station which is capable of operating
SERT at any physical test location. Figure V-6 illustrates the physical layout of equip-
ment in the van. The van, converted from its previous radar application by NASA
Lewis Research Center, was supplied to RCA as GFE for employment in the SERT pro-
gram. RCA equipped it with light and power facilities, electronic equipment, electronic
maintenance facilities, and remote cabling.

The van was equipped with eight racks of electronic equipment identical to the racks
of equipment of the RCA test station as it was originally conceived. The van equipment
consists of a checkout control unit (Paragraph V-B. 3), telemetry receiving and decom-
mutation equipment (Paragraph V-B.4), and such ancillary electronic test equipment as
an oscilloscope, VI'VM, multimeters, etc. To provide single interface connection
with the remotely-located spacecraft, the equipment was wired to a multi-connector
panel located at one end of the van. The van supplied power via a circuit breaker panel
to all of the electronics racks, a fluorescent and an incandescent lighting system, and
two 6-foot maintenance benches with power and lighting fixtures.

The van was successfully checked out with the SERT T-2 spacecraft and delivered to
NASA with the T-2 spacecraft in December 1962. The van remained in operation
throughout the remainder of the SERT program. For more than 1-1/2 years, NASA
personnel used it in the development of ion-engine flight systems at the Lewis Research

Center. It also was used as the prime spacecrait checkout station in the successful
SERT I launch from Wallops Island in July 1964.

3. Blockhouse and Terminal Building Equipment

The electronic equipment installed in the blockhouse and launch tower complex
was designed to function, in conjunction with the flight monitoring equipment in the )
Wallops Island Telemetry Building, during the vehicle launch operations. The equip-
ment consists of a rack of remotely-controlled power supplies which are located in the
terminal building, a relay box located on the launch tower, and a control panel which is
located in the blockhouse. |
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a. Terminal Building Power Supplies

The two power supplies located in the terminal building provide the source of
external power for the spacecraft when it is in a launch configuration. One unit is capable
of supplying 80 vdc at 30 amperes; the other unit is capable of supplying 36 vdc at 15
amperes. Both units supply power to the remotely located relay box in the tower ap-
proximately 150 feet away. Remote sensing enables regulation at the load.

b. Tower Relay Box

The tower relay box is a local control device which responds to remote com-
mands from the blockhouse control station to switch external power to selected space-
craft subsystems, to activate and monitor the performance of the spacecraft during
operation on its batteries, to provide battery charging power, and to shut down the
spacecraft. The relay box also amplifies the hardline output signals from the space-
craft telemetry mixers.

i The first of two relay boxed was delivered to NASA LeRC with the van very early in the
SERT program. This relay box was subjected to considerable modification during the
1-1/2 years it was used at NASA LeRC. Consequently, the second relay box which
incorporated the modifications made to the first box was built late in the SERT pro-
gram and was somewhat larger than the first box. It performed without failure during
the SERT I launch operation.

c. Blockhouse Payload Control Panel

The blockhouse payload control panel (Figure V-7) controls the operation of
the spacecraft during the launch countdown. It performs this task in conjunction with
the terminal building power supplies and the launch tower relay box. The panel is de-
signed to control the operation of the spacecraft while it is powered by either the ex-
ternal terminal building source or the internal battery. Specific spacecraft subsystems
can be activated by command from the control panel. These include the telemetry sub-
system, rf subsystem, the cesium-contact-engine subsystem, and the accelerometer.
By using the external power source rather than the internal batteries for the operation
of the spacecraft subsystems during countdown, spacecraft battery power can be con-
served.

During power operation using the external source, the power supply voltages and cur-
rents drawn are continuously displayed on meters. Voltage levels are adjustable by
the operator. The control panel has test points available which monitor the spacecraft
voltages. It is intended that these voltages be monitored on a digital voltmeter.

The operation of the spacecraft on internal power is initiated at the control panel by
pressing the ACTIVATE PAYLOAD pushbutton. Activation of this button starts the
predetermined flight program. The signal which is activated by this button is carried
by hardline to the power-switching unit where it is processed and turns on battery
power to all of the equipment except the mercury-bombardment engine subsystem. It
also starts the count of the on-board programmer.
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Figure V-7. Blockhouse Control Panel

The ACTIVATE PAYLOAD signal is initiated about 30 seconds before to vehicle liftoff.
It is not, however, irreversible as long as the flyaway cable to the spacecraft remains
plugged-in. With this connection still intact, either PAYLOAD OFF, EMERGENCY
OFF, or a count of 300 on the control panel counter will shut down the spacecraft and
reset the on-board programmer.

The 30-second period between the time the spacecraft is activated and the time the
vehicle lifts-off allows only a short period of time in which to confirm proper opera-
tional status of the spacecraft. Because of this rather limited time period, the con-
trol panel is designed with a fail-safe system which monitors all the critical param-
eters via a hardline and provides a green/red indicator display. The appearance of a
red indicator at any time before the separation of the flyaway cable means "hold. "
The appearance of all green indicators signifies ""go."

This hardline monitoring system is intended to complement, not replace, the function
of the spacecraft telemetry which is being received in the Wallops Island telemetry
building.

The control panel has special functions, these include a BATT BURN-OFF pushbutton
which causes burn-off of the main hattery peaks, a LERC NEUT pushbutton which en-
ables the stepping switch in the neutralizer voltage control unit (NVCU) to advance to
its zero position, and an indicator which detects the switch position at zero. Other
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functions include an indicator which denotes the mode of the auxiliary command unit, an
indicator which confirms the disarming of the spacecraft squibs, and a pushbutton,
which, via spacecraft interlocking circuitry, resets the panel counter if the on-board
programmer is at zero. The panel also has potentiometers which allow the remote ad-
justment of the ionizer and the boiler of the cesium-contact-engine subsystem. The
output of the 56-volt power supply can be controlled from this penal. This allows si-
multaneous battery charge and power feed to the cesium-contact-engine subsyxtem.
The control panel has local functions which include a lamp-test cricuit and a switch-
over circuit which change the power for the panel from a power supply to a battery
pack in the event of any loss of primary power. A timer also is included to keep track
of spacecraft battery-drain time.

The control panel was designed and fabricated early in the SERT program. During the
1-1/2 years before its use in the launch of SERT I, it was modified several times.
Some panel changes were made a relatively short time before the launch. The basic
panel layout and electrical design proved to be readily adaptable to the rework which
was necessary. :

D. FLIGHT MONITORING AND CONTROL EQUIPMENT

1. General

The flight monitoring and control equipment consists of a spin-rate equipment
rack, command programmer equipment rack and meter panel which, in conjunction
with the communications facilities at the Wallops Island station, is used to monitor
and control the flight of the SERT spacecraft. The equipment, racked and dolly-
mounted for ease of handling, is located in the telemetry building.

2. Spin-Rate Equipment Rack

The spin-rate equipment provides for processing and display of the real-time
spin information of the SERT spacecraft. The equipment consists of a pulse shaper,
input selector, and divider unit, two digital counters, a counter coupler, a digital
printer and a digital clock with visual time display. A block diagram is shown in
Figure V-8, and a photograph of the equipment rack in Figure V-9.

The received spacecraft sun-sensor pulses are obtained from the Wallops Island
7.35-ke discriminator outputs and fed to the spin-rate rack. The selector switch
couples one of the outputs from the two 7. 35-ke discriminator channels to the pulse
shaper. The train of shaped pulses is then fed to an optional divide-by-ten scaler
and then to the dual-counter coupler. The counter coupler gates the pulses such that
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Figure V-8. Block Diagram of the Spin-Rate Rack

L

alternate pulses start and stop the two counters sequentially. During the period be-
tween spin-rate pulses, the activated counter accumulates the output of a standard 100-

ke clock reference and the deactivated (stopped) counter is read and printed out.

The

use of two counters alternately provides continuous monitoring of the spin rate periods.
The divide-by-ten scaler was designed to provide the capability for recording spin per-
formance throughout the flight within the capacity of the printer recording paper.

A visual time display was also provided and slaved to the 100-kc reference clock. In

addition, an analog voltage output of a selected number of significant figures of the

counter was provided.

3. Command Programmer Equipment Rack

The command programmer equipment generates the coded audio tones for modu-
lation of the rf carrier; these tones are used for command transmission to SERT via the

Wallops Island transmitter.

The equipment, which consists of a tone-generator unit

and a command programmer unit is mounted in a standard electronics rack. The
equipment is identical to that used in the RCA test station (see section V-B. 6) except
that the noise generator is omitted.
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A command is generated by the activation of any one of the ten command selector con-
trols located on the front of the operator panel. A command selector control is used
to initiate the automatic selection and time sequence of a coded pair of audio tones re-
quired for the transmission of a particular command.

A single front panel control selects and generates for transmission an address tone for
0.75 second, followed by a 1.0 second delay, and then followed by a continuous tone
for as long as the control is actuated. The digital decoding circuitry of the spacecraft
command subsystem is enabled by the first tone and executes the command upon recep-
tion of the second tone.

The tone generators consist of a set of five standard IRIG audio-frequency oscillators
which modulate the transmitter rf carrier when selected by the command programmer.

The TIROS a.m. transmitter at Wallops Island, which is used to command the spacecraft,
is operated at the carrier frequency of SERT and is modulated by the SERT audio com-
mand tones. The transmission link is completed by using the TIROS high-gain antenna.

4. Meter Panel
A set of 16 MMU meters which are described in Paragraph V-B.5 of this section

is used for real-time flight monitoring of selected spacecraft parameters. The meter
panel is integrated into the command programmer equipment rack.

REFERENCES

V-1. RCA Document S-19, "SERT Umbilical Requirements, "' NAS-8-2449.
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SECTION VI
TESTING PROGRAM

A. INTRODUCTION

The SERT test program was designed to demonstrate, with a high degree of con-
fidence, that the spacecraft will fulfill the mission requirements. To this end, a qual-
ification and acceptance test philosophy was adopted which would allow the systematic
failures to be exposed (and designed out) and to demonstrate a random failure rate that
is conducive with a high probability of mission success. * This test philosophy has
been applied to both component and complete spacecraft levels. Supporting the quali-
fication and acceptance test programs are the development, design-criteria, and
special-parts-evaluation test programs. This testing, coupled with the subsequent
reliability analyses, has established the aforementioned confidence level.

The qualification test program consists of subjecting one flight-standard model to
levels of environmental stress above operational level. Under these conditions of
overstiress, the equipment is required to operate within specification in accordance
with the mission profile. One unit shall successfully complete this test phase without
a systematic failure.

In consideration of the length of the mission (less than 1 hour), sufficient accumulated
test time exists fo make life testing or endurance testing unnecessary. For components,
a level of overstress was selected to provide a high confidence level for each unit in
spite of the absence of definition, at the outsef of the program, of its location in the
spacecraft. In the vibration environment, for example, the various amplifications or
resonant frequencies were not known with respect to the mounting of the various com-
ponents. Therefore, random-vibration-spectra testing was adopted, with the level
established by experience gained under the TIROS program. Again, in the thermal-

vacuum-environment;-the ranges of temperature were-not known with respect to com-

ponent mounting positions. In thermal-vacuum testing, temperature ranges exceeding
those anticipated were adopted. All electrical and active mechanical components were
subjected to this type of testing; passive mechanical components were not (No stress
testing on the baseplate, mounting brackets, etc.). For the integrated spacecraft,
environmental levels and exposures were selected to subject the complete spacecraft

*A systematic failure can be assigned a definite cause and, hence, can be analyzed
and rectified; usually, these failures occur independent of time and are a function
of stress. Random failures have no particular pattern and no assignable cause;
the time between such failures can usually be estimated.



to overstress conditions. As the thermal-vacuum testing was performed at NASA,
the main area of concern at RCA was vibration. The spacecraft vibration test speci-
fication was based upon Scout program recommendations.

The acceptance test program was designed to prove that the equipment conforms to the
applicable drawings and specifications without subjecting the units to a degree of fatigue
which would impair their mission performance or reliability. All flight production
models were subjected to this testing before delivery or installation on the spacecraft.
At the integrated spacecraft level, testing at RCA was limited to vibration and electrical
performance testing. As for the qualification tests, thermal-vacuum tests with oper-
ating ion engines were conducted at the Lewis Research Center.

B. COMPONENT TESTING

1. General

Each component of the SERT spacecraft was subjected to a series of tests de-
signed to ensure the proper performance of the equipment in its service environment
prior to the integration of the component into the system. The environmental tests
for prototype qualification and the flight model acceptance tests were in conformance with
the test specifications detailed in RCA Drawing 1175389, Table VI-1 summarizes these
environmental tests.

The testing program for each component was tailored, insofar as possible, to its oper-
ational and environmental profile. In general, testing was initiated by a complete per-
formance verification of the component at ambient conditions to establish a standard
of reference. Measurements taken during environmental exposure were related to
performance requirements in the environment. In some cases, performance checks
were also conducted after exposure to determine performance trends. A complete
performance test was always performed at the end of the environmental test program.
In a number of cases, certain tests were omitted at the component and subsystem

level when the test requirements were considered to be excessive and the level of
confidence in the component was high.

Table VI-2 presents a brief description of the test program for each of the SERT com-
ponents and subsystems. The performance measurements for each are described in
the following paragraphs.
2. Performance Measurements

A general description of the performance test operation, a list of the measure-

ments which were made, and the reference to the detailed test procedure for each
component is compiled here. Specific details (voltage levels, test set-up and problems)
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TABLE VI-1. SUMMARY OF ENVIRONMENTAL TESTS

VIBRATION
Direction Freque:cy ACEZI:;:;IOII Duration
| ===

Prototype Thrust Axis 15-2000 cps 0.329 g2/cps 5 min

Transverse Axes 15-2000 cps 0.120 g2/cps 5 min

Flight Thrust Axis 15-2000 cps 0.050 g2/cps 1 min

Transverse Axes 15-2000 cps 0.050 g2/cps 1 min

ACCELERATION
Direction Acceleration Duration
Level
Prototype Thrust Axis 25¢g 5 min “ﬂ
Transverse Axes 15g 5 min
SHOCK

Direction Severity No. of Shocks

= =¥
Prototype Thrust Axis 50g 5
THERMAL VACUUM
Temperatures Test
- . Cycles
min |nom |max Duration
e |
Prototype ~10°C |25°C |75°C 2 hr ea temp 2
Flight 0°C j25°C [|65°C 2 hr ea temp 2
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may be found in the log book for each component. Each electrical component of the
SERT 1 spacecraft was operated from specially designed control panels during the

environmental qualification and acceptance tests. Measurements were made using
standard test equipment which assured performance within the specifications of the
component.

Neutralizer Voltage Control Unit (Mercury-Bombardment Engine Subsystem)

Description:

Measurements;:

Procedure:

A calibrated current of 0.3 amperes simulating the neu-
tralization curreni was applied to the input from a test
source. The source maintained the current at an essen-
tially constant level while the component was activated to
switch in its potential-producing resistors.

1. Telemetry current monitor calibration
2. Telemetry voltage monitor calibration
3. Flight sequence performance

SPO-8 ""Neutralizer Voltage Control Unit Test Specifi-
cation" (Reference VI-1)

Signal Conditioner, Central Unit, (Telecommunications Subsystem)

Description:

Measurements:

Accurately known signals corresponding to the low end and
the high end of the channel range were applied to each chan-
nelinput. This was compared to the channel output to ob-
tain a two-point calibration of each channel over its range
of operation.

1. Channel full-range calibration

Procedures:

2. Pulse-train noise and channel drop-out during vibra-
tion, For this test, the signal conditioner was inte-
grated with the commutators.

SPO-66 "Signal Conditioner Qualification Test Procedure"
(Reference VI-2)

SPO-67 "'Signal Conditioner Acceptance Test Procedure"
(Reference VI-3)
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C.

DC Amplifiers (Signal Conditioner) -

Description: Accurately known input signals were used to drive the
amplifier over its range of operation while the output was
monitored.

Measurements: 1. Amplifier gain
2. Amplifier drift
3. Amplifier linearity
4, Anmplifier B+ stability

Procedure: SPO-55 "Test Procedure for Sonex DC Amplifier' (Ref-

erence VI-4)

Ion-Beam Probe Signal Conditioner

Description: Resistances simulating the sensors were varied over the
operation range, and each amplifier output was monitored.

Measurements: 1. B+ stability -
2. Amplifier output calibration vs input
3. High potential test

Procedure: SPO-77 "SERT Lewis Probe Amplifier Test Procedure'

(Reference VI-5)

Commutator (Telecommunications Subsystem)

Description: The channel segments and pedestal segments were activated
with accurately known test signals. The measurements were
made at the output terminals.

Measurements: 1. Contact resistance

2. Duty cycle

3. Edge noise




Procedures:

4. Contact noise
5. Speed control
6. Input power

SPO-46 ""Mechanical Commutator Qualification Electrical
Test Procedure" (Reference VI-6)

SPO-47 "Mechanical Commutator Acceptance Test Pro-
cedure'" (Reference VI-T7)

Subcarrier Oscillator Package (Telecommunications Subsystem)

Description:

Measurements:

Procedure:

A special test fixture enabled the application of accurately
known, independent subcarrier modulation signals to each
subcarrier. Measurements were made at the subcarrier

output mixing point.

1. Input power

2. Frequency stability
3. Amplitude modulation
4. Linearity

5. Sensitivity

6. Distortion

SPO-171 "Test Specification for the SCO Package' (Refer-

ence - Vi-8)

g.

CuoT—viI—oy

Special 10.5-kc Subcarrier Oscillator (Telecommunications Subsystem)

Description:

A special test fixture enabled the application of accurately
known subcarrier modulation signals to the oscillator.
Measurements were made at the output.
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Measurements:

Procedure:

1. Linearity

2. Sensitivity

3. Distortion

4, Amplitude modulation
5. Frequency stability

SPO-56 "Test Specification for 10.5-kc SCO" (Reference
VI-9)

RF Transmission Equipment

Description:

Measurements:

The transmitter, TR-16, was initially tested to obtain its
characteristics vs. temperature data. The transmitter was
then integrated with the power converter, PC-31, and power

amplifier, PA-19, to form a complete set comprising trans- -
mitter, power amplifier, and power converter. The com-

plete set was then subjected to the acceptance tests as a ”
unit.

(1) Transmitter TR-16
(a) Input power
(b) Output power
(c) B+ stability
(d) Frequency stability
(e) Modulation carrier deviation
() Modulation distortion
(2) Transmitter, Power Amplifier, and Converter
(a) Input power

(b) Output power




i.

j.

(c) Frequency stability
(d) Modulation carrier deviation
(e) Modulation distortion
Procedure: S1.-12, -13, -14, -15, -18, -19, "Log Book Transmitter

System,'" and SL-134, "Log Book RF Subsystem
TR-16 S/N 507 (Reference VI-10)

Diplexer

Description: Each input was driven by rf signals corresponding to the
system power and frequency requirements. Measurements
were taken at each of the diplexer ports using calibrated
standard test equipment.

Measurements: 1. Insertion Loss

2. Interchannel rejection

3. VSWR

Antenna Coupling Network

Description: The unit was tested with standard test equipment supported
by special one-quarter wavelength matching transformers
at each antenna port.

Measurements: 1. Transmission and Receiving Insertion Losses

2. Reflected power to transmitting and receiving ballast
ports

3. Power output balance between antenna load ports
(transmitting and receiving)

4, Transmission and reception VSWR

5. Transmission/reception section isolation

VI-9
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Procedures: SP0O-91 "Acceptance Test Procedure for Antenna Complex .
Assembly, " (Reference VI-11)

SP0-92 "Transmitter Coupler and Balun Qualification Test
Procedure for Critical Pressure Voltage Breakdown' (Ref-
erence VI-12)

RF Diplexer Ballast Load

Description: The load was subjected to qualification and acceptance test-
ing using standard test equipment

Measurements: 1. Resistance
2. VSWR

3. Power dissipation

4. Thermal .
Procedure: SPO-90 "RF Diplexer Ballast Load Qualification Specifica- .
tion and Acceptance Specification' (Reference VI-13) .

Command Subsystem (Command and Control Subsystem)

Description: The command subsystem, composed of the receiver and
command decoder unit, was tested in two phases. The re-
ceiver was fully tested as an independent unit; the command
decoder was then integrated with the receiver and the two
units were tested as a subsystem.

Receiver Test Description: The receiver was exercised with an amplitude-
modulated calibrated rf carrier source. Measurements
were taken at the receiver output and the receiver charac-
teristics were determined over the entire operating range.

Measurements: 1. Noise figure

2. IF bandwidth

3. AGC calibration curve




4. AGC telemetry output
5. Audio output level
6. Audio output bandwidth
7. Sensitivity curve (rf input vs audio output without AGC)
8. Oscillator stability
Subsystem Test Description: During the subsystem test, a special command
subsystem test set provided the audio tones and tone com-
binations to modulate the rf generator used in the testing
of the entire command sequence. A test panel monitored
the relay closures at the command decoder as the com-
mands were exercised. During the vibration test, high-
speed recording equipment was employed to detect any re-
lay contact crossovers.
Measurements: 1. Audio amplifier gain
2. Command verification as a function of:
(d) Minimum input signal to receiver
(b) Strong signal (saturated receiver)
(c) Steps (a) and (b) in noise environment

(d) Noise input only

3. Command reset

4. Command lock=out function
5. Output relay crossovers (vibration test only)

Procedure: "SERT Command Subsystem Test Procedure' (Reference
VI-14)
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m. Auxiliary Command Unit (Command and Control Subsystem)

0,

Description: All tests of this component were conducted using a specially
designed test panel. During the vibration environment qual- -
ification and acceptance tests, the command outputs were
monitored to detect possible false commands, particularly
those which might be caused by very short duration closures
of a relay.

Measurements: 1. Telemetry mode indication calibration
2. Flight operation
3. Detailed monitor of command outputs to detect any
evidence of false commands during vibration environ-
ment
Procedure: SPO-52 "SERT Qualification Procedure for Auxiliary Com-

mand Unit" (Reference VI-15)

Power-Switching Unit (Power Subsystem) .

Description: All tests of this component were conducted using a specially
designed test panel. During vibration environment quali-
fication testing, the relay-controlied outputs were monitored
to detect any relay contact crossover.

Measurements: 1. Flight operation

2. Detailed monitor of relay-controlled outputs to detect
any evidence of relay contact crossover

Procedure: SPO-2 "Qualification Procedure for Power-Switching Unit"
(Reference VI-16)

Sun Sensors (Sensory Subsystem)

Description: The unit was tested by activating the sensing element with
a strobotac and measuring the resultant output pulse.




Measurements: 1. Input power
2. Pulse amplitude
3. Pulse width
4. Pulse rise time
5. Pulse droop
6. Pulse fall time
Procedure: SPO-93 "SERT Sun Sensor Electrical Test Specification"

(Reference VI-17)

p. Ilon-Beam Probe Mechanism (Sensory Subsystem)

Description: The unit was tested with a special calibration fixture which
provided a precise determination of the angular position
of the probe vs. the probe-position-telemetry output. An
initial calibration of the device established the reference for
all the subsequent tests.

Measurements: 1. Start signal operation
2. Probe sweep time

3. Calibration of angular probe position vs. telemetry
output

4. B+ stability

5. Flight operation

Procedure: SPO-48 "SERT Test Specification of the LeRC-Probe
Mechanism'" (Reference VI-18)

q. Fuse Block (Electrical Integration)

Description: The fuse block was tested using a test circuit which provided
the rated current of the fuses. Calibrated meters were used
to monitor the current through, and the voltage across the
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r'

Measurements:

Procedures:

fuses before, during, and at the conclusion of each test.
During the qualification testing, the fuse block was tested
for rated blow current under environmental conditions.
1. Current

2. Voltage

3. Resistance

SPO-68 "Acceptance Electrical Test Procedure for Payload
Fuse Block'" (Reference VI-19)

SPO-70 "Qualification Electrical Test Procedure for Pay-
load Fuse Block (Reference VI-20)

Engine Extension Subsystem

Test Set-Up Description: The functional tests on the engine-extension sub-

system were performed on a spin-test rig designed and
built for this particular purpose. The basic elements of
the device are a variable speed drive, a speed reduction
gear box, and a rotating gimballed platform. A simulated
center column assembly containing dummy damper-lock
brackets is mounted on the platform. Four equally spaced
dead weights and four equally spaced adjustable threaded
rods , upon which adjustable weights are mounted, extend
radially from the column assembly in order to closely
duplicate the moment of inertia of the total SERT space-
craft. Two slip-ring assemblies are available for electri-
cal signals to the rotating platform.

The engine extension subsystem, dummy engines, and all
related engine mounting brackets were installed on the spin
rig. The assembly was positioned so that, upon release,
the extension of the subsystem was aided by a one-g field.
Since the engines swing downward, they provide a conserva-
tive test of (1) the damper system which must operate
against the forces created by the one-g field and (2) the
force required to fully extend the engines. A photograph of
the test arrangement is shown in Figure VI-1,




Figure VI-1. Spin-Test Setup

Measurements: The speed at which the tested items rotated was carefully
adjusted and recorded. However, the most critical re-
quirement was to make observations of the test progress,
as well as to analyze the test results. Significant observa-
tions made during the test progress were (1) the approxi-
mate length of time taken for the engines to unfold and
(2) the synchronization of the unfolding of the two engines.
At the conclusion of the test, observations were made
relative to amount of fluid leakage, abnormal marks and
stiffness of the hydraulic system.

Procedures: SPO-88 ""Flight Test Specification of the Hydraulic Damper
System'' (Reference VI-21)

SL- 36 Log Book (Reference VI-22)
SL-150 Log Book (Reference VI-23)

SL-168 Log Book (Reference VI-24)
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Se.

Antenna Ground-Plane

Test Set-Up Description: The test set-up for the antenna ground-plane spin

Measurements:

References:

test was essentially the same as for the engine-extension sub-
system test. However, the entire gimballed platform and
center column was removed from the spin rig. The lower
ring and ground plane assembly was then fastened to the

flange of the rotating spin shaft.

1. Spin-rig speed

2. Observation of the physical pattern of the ground-plane
wires while spinning after wires had extended

3. Visual inspection for damage subsequent to the spin
test

SPO-89, "SERT Flight Test Specification for the Ring
and Ground Plane Assembly" (Reference VI-25)

SL-48 Log Book and SL-165 Log Book
(Reference VI-26)

Precession Damper

Test Set-Up Description: A precession damper was set up on blocks so that the

Measurements:

Procedures:

curved rod lay in a vertical plane with the center of the rod
below its ends.

1., Friction level - measured by counting the number of
oscillations of the cart on the curved rod when the cart
is released at one end of the rod.

2. Period - The average period was defermined by meas-
uring the time taken by the cart to complete three
cycles and dividing by three.

SL-145 Log Book, SL-163 Log Book,
and SL-164 Log Book (Reference VI-27)




C. SYSTEMS DEVELOPMENT TESTING

1. General

The systems development testing for the SERT I program was instituted to test the
design and interface compatibility between subsystems, and between the spacecraft and
the test station. The tests also included the checkout of the interface between the space-
craft and the electronics van which was to be used during launch operations. The de-
velopment testing also afforded the opportunity to establish an orderly sequence of
procedurali testing methods. Inaddition,the program was used to evaluatethe perfermance
at the subsystem and system level in accordance with the respective design specifications
and test procedures. Finally, the program included a survey of the system operation
with the systems exposed to the mission temperature profile.

2. Nutation Test
a., Test Set Up

This test was performed using the spin-test rig described in paragraph
VI-B.2.rof the engine-extension subsystem tests. Since the dummy spacecraft was
gimbal -mounted to the spin-rig drive mechanism shaft, a "floating action"was created.
This permitted the study of the precession characteristics of the spacecraft during the
unfolding of the engines. A light focussed through an optical lens was attached to the
center of the dummy column at the top and was pointed vertically upwards. A mirror,
suspended above the spin rig, reflected the focussed light rays onto a screen placed at
a given distance from the mirror,

b. Measurements

The amount of precession was determined by measuring the size of the cir-
cumscribed circle made by the focussed light rays on the screen. Clay was added at

appropriate locations of the dummy spacecraft until dynamic balance was obtained at
which time the projected light appeared as a point on the screen. While the engines
were unfolding, marks were made on the screen at the circumference of the largest
circle projected by the light. Since the distances from the light source to the mirror
and from the mirror to the screen were known, the amount of precession could be
determined. Test results showed the precession induced to be on the order of 1 degree.
Values as large as 5 degrees, although undesirable, could have been tolerated.

VI-17



3. Systems Electrical Development Tests

Systems electrical development testing was conducted on the T-2 spacecraft during
the early part of the program. The tests were conducted in four major phases:
¢ Subsystem Testing,
¢ System Testing,
e Electronics-Van Testing, and

¢ Thermal Testing.

a. Subsystem Testing

Each subsystem in the spacecraft was independently tested. This testing
included:

(1) Verification of harness design and fabrication and power-switching unit
operation by power and signal checks at the harness outputs;

(2) Checkout of all spacecraft control functions in accordance with the
programmer profile;

(3) Testing and calibrating of the telecommunications subsystem (This test
was performed in steps which consisted of testing and calibrating each
component in the subsystem prior to overall subsystem testing.);

(4) Checkout of the command subsystem;

(5) Testing both engine subsystems using dummy-engine loads; and

(6) Testing of the sensory subsystems.

b, System Testing

After subsystems testing, the fully integrated spacecraft was tested at
ambient conditions. The test consisted of activating the spacecraft in a simulated
flight sequence., Dummy loads were used in place of the ion engines,

c. Electronics Van Test

A test was conducted to verify the interface compatibility between the space-
craft and the electronics van., This test consisted of verifying all of the spacecraft
operations that are controlled and monitored at the van.

VI-18




- d. Thermal Test

The T-2 spacecraft was subjected to a thermal test in order to verify (1) the
. capability of the system to operate over the temperature range and (2) the

specification performance of the telecommunications system (telemetry accuracy).
The spacecraft was installed in the 14-ft thermal-humidity chamber at AED. For
the telecommunications test, calibrated inputs were provided to the signal conditioner
by the Telemetry Signal Simulator., System outputs were connected to the RCA Labo-
ratory Test Station by hardline, and the decommutated outputs were recorded. The
test was performed at each of three separate temperatures (0 °C, + 25°C, and + 50 °C),

System operation was then checked by the performance of a complete flight sequence,
on spacecraft battery power, in the thermal-humidity chamber.

e. Results

The systems electrical development testing served to uncover, and subse-
quently verify solution of, a number of subsystem and system interface problems.
Furthermore, the final configuration of the RCA system was shown (with few excep-
tions*) to be capable of meeting design requirements.

For the subsystem and system tests, the following significant results and accomplish-
ments can be cited:

(1) Proper integration of the subsystems into the system was demonstrated.

(2) As a result of interface incompatibility between the power-switching unit
and the cesium-contact-engine subsystem, and the determination by NASA
that the high-current switching could be accomplished within the ion-
engine subsystems, solid-state switching in the power-switching unit
was replaced with relays (Refer to Paragraph III. F. 3).

(3) The incompatibilities between the laborzitory test station and the space-

craft were removed from the system. These consisted primarily of
""backdoor" circuits which were removed through minor wiring changes
in the test station.

*Electronic commutator failures due to inputs outside of specification limits were un-
covered later during T-2 testing with operating ion engines at Lewis Research Center.
The units were replaced with mechanical counterparts. (See Paragraph II-D.4)
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In the electronics van test, minor interface problems were solved, and more impor-
tant, operational improvements were developed.

The thermal test served two major purposes:

(1) The capability of the telecommunications subsystem to operate well within
specifications over the temperature range without the need for temperature
calibration was demonstrated.

(2) All RCA subsystems operated satisfactorily during the flight sequence test,
although difficulty was experienced with one of the ion-engine subsystems.
Component thermal behavior was within specifications during the test.

After the system development tests had been completed, the electrical prototype
model, T-2, and the electronics van were delivered to NASA LeRC for live ion-engine
integration testing at the NASA vacuum facility.

4. Thermal—Vacuum Tests

All thermal-vacuum development testing for the SERT I program was performed
by NASA at Lewis Research Center, with the technical cooperation of both the Hughes
Aircraft Co, and RCA.

For information pertaining to this phase of the testing program (details about problems
associated with plasma and high-voltage arc-overs, their effect on spacecraft per-
formance, and their ultimate solution) the reader is referred to the Lewis Research
Center, Cleveland, Ohio.

5. Qualification Vibration Testing, Model T—-1B-1

a. General

Since the final location of components and the vibration environment to be
found at these locations were not fully known, a random-noise vibration profile was
used for qualification and acceptance testing of all components (see Paragraph
VI-B.1.). Midway in the program, and before the integration of the final configura-
tion, it was felt that exposure of components to the real vibration environment existing
on the spacecraft structure would be desirable in order to isolate any problem area
and to enable RCA to solve these problems with a minimum of compromise to the
program. Consequently, shortly after the successful completion of the T-1B (Con-
figuration B) vibration survey testing (see Section II-B,2,), a complete structure to-
gether with a majority of the system components was assembled and identified as T-
1B-1. The T-1B-1 model integrated to the Scout separation mechanism is depicted in
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Figure VI-2. The model was wired only as necessary to provide power to. and per-
formance monitoring of., those components operational during launch, Acceleration
As a compromise to the
degree of harnessing required and the complexity of the test, power was not applied to
the cesium-contact engine subsystem. The model was subjccted to a complete pro-
totype vibration test, with individual performance testing of the components taking
place before and after the vibration test. Detailed discussions of the testing and its

results will be found in References VI-28, VI-29, and VI-30.

Instrumentation was also provided at sclected locations.

Figure VI-2, SERT Vibration Survey Model (T-1B-1)



b. Test Setup

The spacecraft model and the Scout separation mechanism were mounted on
the AED 28,000-1b vibration table. The spacecraft electrical operations were con-
trolled through the system control panel. The laboratory test station was used to
monitor all operational parameters via hardlines and special cables, which were in-
stalled for this purpose. The subsystems that were interconnected by the special
harness and activated during test operation included:

(1) Power Subsystem: Although activated batteries were installed in the
spacecraft, power supplies in the system control panel were used to provide
all the vehicle power. Switching was performed by the power-switching unit.
All relays within the power-switching unit, including those in the squib-firing
circuits, were monitored with special high-speed recording equipment to
detect any contact crossovers.

(2) Telecommunications Subsystem: The telemetry signal simulator was used
to provide calibrated inputs to the signal conditioner. The non-commutated
data telemetry equipment was activated by the normal system signal inputs.
The rf outputs were cabled to the laboratory test station for monitoring and
recording.

(8) Commandand Control Subsystem: During the vibration test, primary power
only was applied to the programmer. Although the command and control sub-
system was in full operation, its output commands were not used. Command

subsystem outputs were monitored and recorded to determine the presence of
contact crossover,

(4) Sensory Subsystem: During the vibration test, primary power was applied

to the sun sensors and ion-beam probe signal conditioner but not to the ion-
beam probe mechanism.

c. Test Description

The vibration survey consisted of a sequence of tests in which the spacecraft
was exposed to sinusoidal and random excitation in its thrust (Z), lateral (X), and
lateral (Y) axes.

The test was initiated by activating the spacecraft and applying the vibration stresses.
The electrical subsystems that were activated remained energized throughout the

duration of the test.

Spacecraft operation was monitored throughout the entire test. Test sequence, stress
levels, etc., are delineated in Table VI-3,
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After all vibrations tests were completed, each component was removed from the
spacecraft, inspected, and tested for conformance to the corresponding design specifi-
cations.

d. Results

The T-1B-1 vibration test program proved extremely valuable in that it (1)
showed most components to be capable of withstanding the vibration environment, (2)
directed attention to a few problem areas, and (3) supported conclusions from previous
tests, which were performed with dummy components to show that the structure would
provide a suitable vibration environment,

In the areas of RCA responsibility, the command subsystem and ion-beam probe mechanism
were revealed as problem areas. Problems were encountered with the engine-exten-
sion subsystem, the diplexer, and the neutralizer voltage control unit. Subsequent
analysis and design modifications elminated these problems,

D. SYSTEM TEST PROGRAM
1. General

The SERT system-test program was conducted in two phases;

. Prototype Qualification: The prototype Model, T-1B-3, was subjected to
a test program designed to simulate operation in environments greater
than those expected. The program consisted of electrical ''debugging,"
thermal calibration, vibration environment, spin environment, and (at
the Lewis Research Center) thermal-vacuum and transient-vacuum-
ehvironment testing.

Flight Acceptance: The Flight Model, T-3, was subjected to a test
program designed to simulate operation in environments similar to
those expected in flight. Like the prototype, the program was
designed to consist of electrical debugging, thermal calibration,
vibration environment, spin environment and (at the Lewis Research
Center) thermal-vacuum and transient-vacuum-environment testing.
The environmental tests were at a level lower than those of the proto-
type. The environmental test specifications are detailed in RCA Draw-
ings 1721034 and 1175389,
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2. Prototype Model T-1B-3

a. Electrical "Debugging"

The electrical-debugging phase of the qualification tests verified the proper
operation of the prototype model under ambient atmospheric conditions, The tests were
performed in a "clean room' at AED using the RCA Laboratory Test Station which is
described in Section V of this report. A step-by-step procedure of the tests are detailed

in Reference VI-32. The flow diagram of Figure VI-3, and the following text briefly
describe the test requirements:

(1) Command Subsystem Integration and Test: The integration and test of
the equipment as a subsystem included mating of the command subsystem,
the antenna coupling network, and the base ring. It was performed to
assure the proper operation of this equipment before its installation
into the spacecraft column.

The integration process was initiated with a test to verify the cor-
rect assembly of the rf cabling to the antenna-coupling network.

The antenna-coupling network was then integrated with the command
subsystem for a receiver sensitivity test, an AGC calibration, and check-
out of the decoder operation. The assembly was activated with the test-
station transmitter and the decoder output was checked for the proper
relay closures in response to test-station commands.

The separation-squib firing and monitor wires were then checked and
properly terminated at the separation-plane connection point. When
bolted together, this assembly was ready to be inserted into the spacecraft
column,

The detailed test procedure used in this test can be found in RCA docu-
_ment SPO-16 (Reference VI-31).

'(2) ‘'Harness Power Test: This test was performed on the partially assembled
'spacecraft to assure the proper operation of the harness, when integrated
with the spacecraft command and control subsystem and the external
test and launch-control equipment. The tests were conducted in four

phases.

First, the test station control equipment was checked out by activating
the pushbuttons and checking for the proper electrical response at the
spacecraft end of the interconnecting cabling. Signals which originated
at the spacecraft were simulated and the control equipment was checked
for the proper electrical response,

VI-25



COMMAND SUBSYSTEM
INTEGRATION AND TEST

_

PRELIMINARY
ASSEMBLY

HARNESS
POWER TEST

SEMI-FINAL
ASSEMBLY

RF EQUIPMENT
TEST

TELEMETRY EQUIPMENT

TEST
ACCELEROMETER PROGRAMMER COMMAND SUN SENSOR
TEST TEST TEST TEST

MERCURY- BOMBARDMENT ENGINE CESIUM-CONTACT ENGINE
SUBSYSTEM TEST SUBSYSTEM TEST

| |
1

ELECTRICAL SYSTEMS
TEST

THERMAL
CALIBRATION

VIBRATION

SPIN

ELECTRICAL SYSTEMS
TEST

ELECTRICAL SYSTEMS
TEST AT
NASA LERC

THERMAL —VACUUM TESTS
WITH LIVE ION ENGINES
AT NASA LERC

% THIS TEST AND ITS RESULTS
ARE NOT INCLUDED IN THIS

R T .
EFOR QUICK DUMP VACUUM
TEST AT
NASA LERC

Figure VI-3. Flow Diagram Showing Prototype Testing Sequence
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Second, after the control equipment had been checked, the interconnecting
cables were connected to the spacecraft for tests of the harness in opera-
tion with the power-switching unit. This was accomplished by again acti-
vating control panel pushbuttons and monitoring the appropriate harness
wire at its load end for the proper response.

Third, after checkout with the power-switching unit, the process was re-
peated to check out the harness with the programmer (phase 3) and then
with the command-backup equipment (phase 4) until all of the command
and control equipment was checked for proper operation with the harness
and the test control equipment.

Fourth, upon completion of the harness power test, the spacecraft was
returned to the assembly area to have the remainder of the components
installed.

The detailed test procedure of the harness power testing can be found in
RCA document SPO-3 (Reference VI-32).

(3) RF Equipment: This was the first test to be performed on the fully assem-
bled spacecraft. Its purpose was to establish the proper operation of the
rf transmission equipment.

The spacecraft was equipped with dummy antennas at each of the four
transmission ports. Each dummy antenna consisted of an rf load and a
quarter-wavelength matching section to match the 95-ohm port impedance
to the 50-ohm test equipment. The rf power at each port was meas-

ured to assure agreement with the specification. Port-to-port balance,
which bad been measured earlier in detail, was rechecked roughly from
the individual port rf level measurements. Each transmitter power
amplifier output was then tested for a minimum of 10 watts, thus assuring
that each transmitter was up to power. The transmitter frequencies were

——tested for proper operation at the test-station receivers. The detailed test

procedure is found in Reference VI-31.

(4) Telemetry Equipment Test: This test followed the checkout of the rf
transmission equipment and was intended as the final step in the checkout
of the spacecraft telecommunications subsystem. The tests included the
adjustment of each transmitter deviation ratio, bandwidth tests of each
fm subcarrier oscillator, and a calibration test of the commutated-data
signal conditioner. The modulation of each transmitter was adjusted for
a carrier-deviation ratio of 1 for the three fm subcarrier oscillators,
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and a deviation of 5 for the accelerometer signal. These adjustments
were accomplished by adjusting the amplitude of each modulation source
for the voltage level corresponding to the source frequency.

The modulation bandwidths of the fm subcarrier oscillators were checked
for agreement to the IRIG standard of £7.5 percent by applying a three-
point modulation signal (corresponding to the two band edges and the center
frequency) to each subcarrier, while monitoring the resultant frequency on
a counter. The output of the appropriate test-station discriminator input
filter served as the frequency monitoring point.

The commutated-data signal conditioner was tested and calibrated at am-
bient conditions by way of the rf link. For this test, each of the 86 data
channels (43 for each transmitter) was activated at the appropriate signal
conditioner input using the telemetry signal simulator, which provided a
two-point voltage source corresponding to the channel maximum and mini-
mum points, The signals were processed via the commutated telemetry
and rf link where each channel was monitored after decommutation at the
test station. The detailed test procedure is found in Reference VI-31.

Miscellaneous Equipment: Following the checkout of the telemetry equip-
ment, components such as the radial accelerometer, the programmer,
the command backup facilities, and the sun sensors were tested and cali-
brated through the telemetry link. The test of this equipment was a pre-
lude to the checkout of the ion-engine subsystems.

The radial accelerometer, which at this point was integrated with its
signal conditioner, was tested for proper operation by observing the
amplitude and the frequency of the output signal relative to the mounting
position of the accelerometer at the time of measurement. The measure-
ment was made at the output of the test-station receiver using an
oscilloscope.

The programmer and the command functions had been previously tested
in detail in the harness power test. At this point, a calibration run of
their telemetry-confirmation profiles was made, using the telemetry
link. These profiles formed the basis for comparison in later tests.

The operation of the sun sensors was then checked. This was accomplished
by activating the solar cells with a Strobotac set at approximately 2 pps and
observing the meter which was monitoring the output of the 7. 35-kc-telemetry
data discriminator at the test station. This test was simply a "go/no-go"
operation test.




(6)

Upon the successful completion of the miscellaneous tests, the space-
craft was ready for the checkout of the ion-engine subsystems. Since
the subsystems are independent of each other, either could be tested first.

Mercury-Bombardment Engine Subsystem: For test purposes, the
mercury-bombardment engine subsystem comprised the ion engine and
its associated power supplies (the magnetic field and neutralizer filament
batteries), the neutralizer voltage control unit, the ion-beam probe
mechanism, the ion-beam probe signal conditioner, and the ion-beam
probe power supply. All of these equipments were tested at this point
for proper operation and for calibration of their telemetry at ambient
room conditions. This subsystem test was conducted in two phases.

In phase one, measurement was made of the subsystem telemetry outputs
through the use of the dummy signal conditioner. Upon the successful
completion of the first phase, the subsystem was tested (second phase)
via the telemetry link to obtain a tape recording of its telemetry during

a simulation of a flight sequence. The recorded telemetry data was

later reduced to confirm the proper operation of the subsystem.

The neutralizer voltage control unit was tested in the first phase for
proper operation and telemetry output. The unit was activated by a 150-
milliampere simulated beam current, which was derived from a 5000~
volt power supply applied through a series current-regulating resistor,
The control unit was then stepped in accordance with the flight sequence,
while its telemetry was monitored for proper operation into the dummy
signal conditioner.

The ion-beam probe mechanism and its signal conditioner were tested in
the first phase for proper operation and telemetry readout. The test of the
mechanism operation and probe-sweep telemetry indication was accom-
plished by activating the sweep from the programmer (similar to the

flight sequence). The probe sensors were replaced by one-percent re~
sistors to test the five amplifiers of the signal conditioner. The resis-
tors were selected to provide a two—point test of the amphfiers. Per-

During all engine subsystem testing, the ion engine was replaced by an
electrical dummy engine. The dummy engine simulated all of the param-
eters of the ion engine, including high-current heater loads and high-voltage
loads. The phase-one test was conducted by simply applying power to the
power supplies in the normal manner and obsérving each telemetry output
at the dummy signal conditioner.

The second phase of testing was conducted with a completely integrated

subsystem. The setup included the neutralization-beam simulation equip-
ment for the neutralizer voltage control unit, the resistors in place of the
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probe sensors, and the electrical dummy in lieu of the ion engine. The

subsystem telemetry was connected to the spacecraft telemetry signal
conditioner.

The test was initiated by advancing the programmer using ""External
Oscillator' at the test-station control panel. At '""Mercury-Bombardment
Engine on" in the programmer sequence, the stepping rate was reduced
to approximately one pps and the mercury-bombardment engine sequence
was allowed to run in its normal manner to its completion. The real-
time performance observations were supplemented by a playback of the
tape-recorded telemetry. In this way, the proper operation of the
integrated subsystem was confirmed in detail.

The step-by~step procedure is detailed in RCA document SPO-43
(Reference VI-33).

(7) Cesium-Contact Engine Subsystem: This subsystem was tested in
essentially the same manner as the mercury-bombardment engine
subsystem. It was tested for proper operation and for calibration of
the telemetry at ambient room conditions in two phases. In phase one,
the subsystem was tested with its telemetry driving a dummy signal
conditioner. In phase two, the subsystem was tested and the telemetry
was tape recorded for later analysis during a simulation of flight sequence.

The step-by-step procedure is detailed in RCA document SPO-44
(Reference VI-34).

(8) Integrated Systems Test: The integrated systems test was the final elec-
trical debugging test conducted on the spacecraft. Upon the successful
completion of this test, the components were ""torqued" down to mechani-
cally secure the spacecraft, and it was deemed ready in all respects for
the environmental qualification testing.

The integrated systems test was conducted at ambient atmospheric condi-
tions to demonstrate that the spacecraft would perform electrically as
intended in flight.

The test actually consisted of three tests conducted in sequence. The
first, a full flight sequence, was conducted with external power and ex-
ternal program-timing control. The use of external power, rather than
battery power, provided emergency control over the prototype model
during the first full systems test. In addition, the use of external power
conserved the batteries until it had been proven that the spacecraft was
operating correctly. The use of external programming control also per-
mitted speed, stop, and restart control over the test program.
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The second and third tests were true simulated-flight tests. They were
conducted on internal (battery) power, internal program, and with the
spacecraft fully isolated from ground except for the rf link. The second
test was a full flight sequence at the normal program rate. This was
immediately followed by a command backup flight sequence, wherein the
spacecraft was controlled by rf commands.

The test setup utilized most of the special equipment which had been used
to conduct the individual subsystem tests. The electrical loads were sub-
stituted for the cesium-contact and mercury-bombardment engines. The
high-voltage power supply and series-resistance setup simulated neutrali-
zation current for the neutralizer voltage control unit. RF dummy loads
were used in lieu of antennas, and fuses were used in lieu of squibs.

The real-time observations and recordings which were made during the
tests were supported by a tape recording of all of the telemetry data.
This was later reduced and analyzed to confirm in detail the proper per-
formance of the spacecraft.

The step-by-step procedure is detailed in an RCA document SPO-24
(Reference VI-35).

b. Thermal Calibration

A temperature calibration of the telecommunications subsystem was per-
formed at atmospheric pressure over the range of temperatures anticipated during
test and flight, This measurement was intended to verify the capability of the subsys-
tem to provide the required accuracy (+ 5 percent) over the expected temperature range
and, in addition, to provide greater accuracy if needed.

The spacecraft was subjected to a thermal-exposure sequence of four steps (25°C, 50°C,
0°C, and 25°C). The return to 25°C confirmed that all data sources had returned to

their initial conditions. The spacecraft was allowed to"seak' at-each temperature until

all of the components had stabilized within two degrees centigrade before any electrical
tests were conducted,

The calibration was performed by applying accurately known signals to the telemetry
equipment, utilizing the telemetry signal simulator, and then monitoring the output on
calibrated test-station telemetry-display equipment. Thus, with a standard source and
display, the changes in data over the temperature range were due to the spacecraft
telemetry equipment,
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The noncommutated telemetry was calibrated by feeding test voltages of 0, 2.5, and
5.0 (£0.1-volt) to the 1.7-kc and 7.35-kc fm subcarrier oscillators. The resultant
frequencies were read on a counter at the output of the input filter to the appropriate
test station discriminators.

The commutated telemetry was calibrated by feeding zero and full-scale signals to
each of the 86 data channels (less the thermistor channels) and monitoring the re-
sultant test-station decommutated display. Thus, a two-point calibration of all but
the thermistor channels was obtained.

Instead of test voltages, the spacecraft on-board thermistors were applied to the ap-
propriate commutated telemetry channels. Thus, with decommutation, both the

thermistor and the appropriate channel were thermally calibrated.

The procedures are detailed in RCA documents SPO-27 (Reference VI-36) and SPO-36
(Reference VI-37).

c. Vibration Testing

(1) General

The SERT I Prototype Vibration Test was designed to represent a
simulated vibration environment, the stresses of which were greater than those ex-
pected to be encountered by the spacecraft during launch and flight operations. This
qualification test program is detailed in Table VI-3.

(2) Mechanical Set-Up

A special test fixture was used, providing a non-resonant interface be-
tween the vibration table and the spacecraft. The spacecraft was attached to the fix-
ture at the separation mechanism.

The stress levels were controlled by accelerometers, which measured the vibration
outputs at the base of the separation mechanism, and any spurious resonances within
the frequencies of interest were damped out. Additional monitoring accelerometers
were located at selected points throughout the spacecraft. A stroboscopic light was

used for aid in the visual observation of particular structural sections of the space-
craft during the test.

A photograph of the T-1B-3 spacecraft on the 28,000-pound vibration table is presented
in Figure VI-4.
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- Figure VI-4. Spacecraft T-1B-3 Mounted on 28,000-Pound Vibration Table

(3) Electrical Set-Up

The control panel from the AED Laboratory Test Station was transferred
| to the environmental area for the performance of the test. Cabling was installed be-
| tween the environmental area, the laboratory test station, and the environmental re-
! cording facility for monitoring and recording of all electrical test parameters. The
| flyaway umbilical and the rf lines were the only connections external to the space-
| craft during the test. The rf lines and dummy loads were installed in place of the
| spacecraft antennas in order to monitor rf power output.

All spacecraft squib lines were disconnected and their harness ends were monitored
by high speed recording equipment for detection of relay closures.

The spacecraft batteries supplied the spacecraft power throughout the test.

Preliminary test preparation included the securing of all spacecraft umbilical connec-
tors and equalization of the vibration table.
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(4) Test Description

The prototype vibration test was a series of seven tests in which the
spacecraft was exposed to sinusoidal and random vibration loads in each of three
axes (Z-thrust, X-lateral, Y-lateral). Throughout the vibration exposures, all elec-
trical and mechanical components of the spacecraft were operated as they would oper-
ate during the launch vibration period of the flight and during the prelaunch warmup
time. A detailed description of the vibration sequence, stress levels, etc. is given
in Table VI-3.

Each vibration test run was initiated by a checkout of the ground station. This was
followed by the activation of the spacecraft into its prelaunch warmup condition.
Following warmup, the on-board programmer was allowed to count to about 340 to
prevent the turn-on of the cesium-contact engine high voltages, at which time it was
reset to zero and a recount was started. This count sequence continued throughout the
duration of the vibration stresses.

Upon the termination of the vibration stresses, the programmer was allowed to count
beyond 1500, and an abbreviated electrical checkout of the spacecraft was made. At

the end of each vibration run, a complete visual inspection was made of all structures,
parts, and connectors.

An electrical system test was performed at the conclusion of all vibration testing to
verify spacecraft operation and to detect any damages due to the stress ex-
posures.

d. Spin Test
(1) General

This test was designed to verify the proper operation of the spacecraft-
engine-unfold and precession-damper mechanisms.

After vibration testing, the spacecraft was mounted to a special test fixture and at-
tached to a spin table as shown in Figure II-12. A set of slip rings was utilized to
directly connect an external power source to the appropriate set of squibs. The
power source for this test was provided by the spacecraft main battery.

At the conclusion of the spin tests, a complete examination of the hydraulic and
damper mechanism was performed.

(2) Engine-Unfold Mechanism
The test was performed by activating the spin table and firing the squibs

when the spacecraft had reached the desired rotational speed (170 rpm). After thearms
unfolded, the spin table was deenergized and the spacecraft allowed to come to rest.
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The hydraulic system and arm extension mechanism were visually inspected through-
out the test for proper operation, includinglocking of the arms inthe extended position.

(3) Precession Dampers
This test was conducted in much the same manner as that for the engine-
unfold mechanism. The precession damper squibs were energized by the main battery.

After the spin test, the dampers were removed and the timing verified.

e. Pre-Delivery Acceptance Test

(1) General

This test was conducted to verify spacecraft operation before shipment.
The test consisted of a simulated flight sequence at ambient atmospheric conditions.

(2) Test Description

The AED laboratory test station was used for the performance of this
test. Control of the prototype model, T-1B-3, was monitored via the rf link and the
model was isolated from ground.

The test was performed in two major operational phases. Phase one of the test was
initiated with the cesium-contact-engine subsystem warm-up cycle. Upon completion of
the warm-up cycle, the on-board programmer was activated and its counting initiated.
At the count of 30, launch umbilical separation occurred, and the flyaway cable and
building ground were released. The spacecraft was allowed to proceed in the normal
flight sequence with monitor and control functions through the rf link. When the pro-
grammer reached the count of 3000 (approximately), the second phase of the test was
initiated by resetting the programmer through the command back-up system. The
spacecraft was then operated through the command back-up system with the space-~
craft on-board programmer in parallel to check out all of the command functions.

(3) Thermal-Vacuum Test

In compliance with NASA directions, RCA delivered the SERT I proto-
type spacecraft to NASA Lewis Research Center in Cleveland, Ohio, for the thermal-
vacuum testing with operating engines. The tests were performed by NASA with sup-
port from RCA personnel.

The thermal-vacuum testing consisted of two major operational tests. The first test
was essentially the flight-sequence operation of the spacecraft during exposure to the
thermal-vacuum environments as determined by the mission profile. The flight se-
quence was not started until after the chamber had been stabilized. The second test
was a transient vacuum test, consisting of the flight sequence operation of the space-
craft in a thermal-vacuum environment designed to represent the sudden pressure
transition encountered during the launch operation.
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3. Flight Acceptance Testing, Flight Mode! T-3

a. General

The flight acceptance test phase of the SERT I system test program demon-
strated that the SERT I flight vehicle had been fabricated and assembled in accord-
ance with the design specifications. The spacecraft was subjected to tests similar to
those performed on the prototype spacecraft and included electrical debugging, thermal
calibration, and vibration environment testing.

b. Electrical Debugging

The spacecraft requirements during this test were the same as those for the
prototype vehicle; the test therefore was conducted in the same manner.

c¢. Thermal Calibration

The spacecraft requirements during this test were the same as those for the
prototype vehicle.

d. Vibration Testing

The SERT I flight acceptance vibration test was designed to certify that
flight model T-3 was fabricated and assembled in conformance with all of the design
specifications, without subjecting the spacecraft to unnecessary fatigue.

All of the test preparations and the test procedure were identical with those used
during prototype testing.

A detailed description of vibration sequence, stress levels, etc. is given in Table
VIi-4.

e. Spin Test

The spin flight acceptance test performed on the flight model T-3 was de-
signed to test the engine-unfold mechanism. The precession dampers were not un-
caged during the spin test because of potential damage in the 1-g environment, as
well as to avoid the removal, recaging, and reinstallation process. The test was

conducted in the same manner as the prototype test except that the rotational speed
was reduced to 130 rpm.
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f. Pre-Delivery Acceptance Test

This test was identical in purpose and procedure as that performed on the
prototype model T-1B-3.

4. Performance, Prototype Model and Flight Model

The system test program of the SERT I spacecraft demonstrated the design
adequacy of all components and subsystems. The test program further demonstrated
the flexibility of the spacecraft and the ground station to adapt to the various changes
and modifications which were instituted during the course of the program.

The tests were performed in the orderly sequence specified by the components, sub-
systems and system test procedures. In the initial phases of the test program,
minor interface and system problems were detected and corrected. During the en-
vironmental phase of the test program the spacecraft performed in accordance with
requirements.
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SECTION VII
RELIABILITY ANALYSIS

A. INTRODUCTION

This section contains a description of a reliability study performed by RCA of
the RCA portions of the SERT system. The purposes of the analysis were (1) to
accumulate data required to perform trade-off evaluations of possible system con-
figurations; (2) to provide a basis for recommending methods of improving reli-
ability; and (3) to determine the survival probability of the RCA subsystems and
equipments.

To accomplish these goals, mathematical reliability models of the functional sub-
systems were prepared, the survival probabilities of all equipment were calculated,
failure modes and effects were investigated, and the results were integrated into
over-all reliability predictions. The reliability evaluation was performed about
half-way through the program, at the time when the design was fairly well estab-
lished (thus providing a firmer basis for the evaluation), but at a time when any nec-
essary modifications could still be incorporated.

The reliability analysis consisted of three major phases: a Failure Mode and Effects
Analysis of the SERT I Spacecraft, a Failure Mode and Effects Analysis of the SERT
I Ground Support Equipment, and a Reliability Estimate and Parts Application
Review.

This section of the report contains a summary of the evaluations performed, the
recommendations made during the analysis, the corrective actions taken, and the
modifications made.

B. FAILURE MODE AND EFFECTS ANALYSIS OF SERT |

The Failure Mode and Effects Analysis performed on the SERT I spacecraft by
AED included the following:

1. Preparation of appropriate system and/or subsystem block or logic
diagrams;

2. Assumption of part- or circuit-failure modes;
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3. Determinationof possible causes for the particular assumed failure mode;
4. Determination of symptoms and local effects;

5. Listing of compensating provisions, if any;

6. Determination of the ultimate effect upon system performance;

7. Assignment of part- or circuit-failure probabilities; and

8. Assignment of part- or circuit-failure class factors.

A qualitative ranking was used for the failure class and failure probability factors;
these factors were ranked into the following four categories of importance.

RANK SIGNIFICANCE
A Catastrophic data or system loss
B Major data of system loss
C Moderate data or system loss
D Minor data or system loss

The failure-probability factors used were estimates of the relative probability of
occurrence for the particular failure mode. The range was divided into five arbi-
trary levels of 1 to 5, with 1 denoting a relatively high probability of occurrence and
with 5 denoting a relatively low probability of occurrence.

The relative importance of each telemetry data point was assigned by NASA, and AED
then indicated the failure class factors for each assumed failure. The details of the
analysis, the components analyzed, and the subsystem results were previously pre-
sented (Reference VII-1).

When the Failure Mode and Effects Analysis of SERT I was completed, the results
were reviewed with the responsible AED Design Skill and the Systems Groups, the
NASA Resident Representative, and, subsequently, the NASA Lewis Research Cen-
ter. Certain of the recommendations arising out of the study were then implemented
at the request of the Lewis Research Center. Table VII-1 is a compilation of the
recommendations and the subsequent action taken or modifications made and the
spacecraft affected.
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C. FAILURE MODE AND EFFECTS ANALYSIS OF SERT | GROUND SUPPORT
EQUIPMENT

The Failure Mode and Effects Analysis performed on the SERT I Ground Support
Equipment by AED included the following steps:

1. Preparation of appropriate system and/or subsystem block or logic diagrams;
2. Assumption of part- or circuit-failure modes;

3. Determination of possible causes for the particular assumed failure mode;

4. Determination of symptoms and local effects;

5. Listing of compensating provisions if any;

6. Determination of the ultimate effect upon system performance;

7. Assignment of part- or circuit-failure probabilities; and

8. Assignment of part- or circuit-failure class factors.

A qualitative ranking was used for the failure class and failure probability factors;
these factors were ranked into the following four categories of importance.

RANK SIGNIFICANCE
A Catastrophic data or system loss
B Major data or system loss
C Moderate data or system loss
D Minor data or system loss

The failure-probability factors used were estimates of the relative probability of
occurrence for the particular failure mode. The range was divided into five arbitrary
levels of 1 to 5, with 1 denoting a relatively high probability of occurrence and with 5
denoting a relatively low probability of occurrence.

The relative importance of each telemetry data point was assigned by NASA, and AED
then indicated the failure class factors for each assumed failure. The details of the
analysis, the components analyzed, and the subsystem results were previously pre-
sented (Reference VII-2).
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When the Failure Mode and Effects Analysis of SERT I Ground Support Equipment was
completed, the results were reviewed with the responsible AED Design Skill and the
Systems Groups, and subsequently with the NASA Lewis Research Center.

Table VII-2 is a compilation only of the recommendations made by RCA, and the sub-
sequent action taken or modifications made and the spacecraft affected.

D. RELIABILITY STRESS ANALYSIS

The reliability stress analysis performed on the SERT I system was a systematic
procedure of determining the reliability of the component, circuit, or device, which
is a prime contributor to the reliability of the subsystem or system. The electrical
operating stresses were derived from a combination of the parts rating, the actual
electrical usage, and the thermal and environmental factors. The steps in perform-
ing the reliability stress analysis were as follows.

(1) Identification of the part and determination of its rating.

(2) Determination of the electrical stresses imposed by the circuitry in which
the part is used.

(3) Determination of part ambient or hot-spot temperature from the electrical
stress and thermal environment.

(4) Calculation of the percent of rated stress derived from (1), (2), and (3)
above.

(5) Assignment of the applicable part generic failure rate from acceptable Parts
Reliability Factors handbooks.

(6) Application of the appropriate environmental failure-rate acceleration factor.
(7) Summation of all parts failure rates in an appropriate manner.
The summation of the failure rates of all parts in a component results in a total failure
rate for that component. This failure rate is the component reliability estimate and,
from it, the probability of failure is determined. Such a probability of failure was

determined for the selected components summarized in Table VII-3; the details were
previously presented. (Reference VII-3)
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The stress analysis served a twofold purpose:

(1) It ensured that the parts selected had a proven capability of operating over
the intended environment (i.e., shock, vibration, and thermal-vacuum).

(2) It ensured that the electrical stresses imposed on the part by the associated
circuitry in combination with environmental conditions were such that the
part did not present an unusual reliability risk.

The components analyzed were those developed by AED. Details were not available on
the RF subsystem components or subcarrier oscillator packages (SCO's); analysis of
these purchased components did not form a part of the effort.

The reliability estimate for the system components was the probability that the com-
ponents would survive the launch environment and the succeeding mission interval. For
SERT, the launch environment had a time duration of 0.083 hour, with 0.80 hour fol-
lowing for the remainder of the mission. The individual probabilities of component
survival were as follows:

Component Py
Power Switching Unit (exclusive of squib-resistors) 0.999958
SERT Signal Conditioner : 0.99955
Command Subsystem 0.9994
Neutralizer Voltage Control Unit 0.99924
LeRC Probe and Amplifier 0.99987
Sun-Sensor Assembly, Regulator, and Revolution Counter 0.999983
Accelerometer Signal Conditioner 0.9985
Mechanical Subsystem 0.997

Precession Dampers
Engine Unfold

Antenna Ground Plane

Squib Current-Limiting Resistors 0.975
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E. SUMMARY OF RELIABILITY ANALYSIS

A reliability estimate of the RCA-developed portions of the SERT I Spacecraft was
0.969. This probability was based upon a launch interval of 0.083 hour followed by a
mission lasting 0.80 hour; this estimate was a product of the probabilities of the com-
ponents listed in paragraph VII-D and was based upon an all-MIL-parts system. A
review of the parts distribution in the SERT Spacecraft revealed that approximately
two-thirds of the parts used were either military standard types or those purchased to
RCA drawings or specifications calling for military standards types of testing, qualifi-
cation, and approval. Those failure rates appearing in MIL-Handbook 217 then apply
to these parts, so long as their usage falls within the limits as specified by the hand-
book. The remaining one-third of the parts used were of commercial grade. Since the
analysis and failure-rate assignment was based upon usage of Military parts throughout,
the following procedure was utilized to estimate the reliability of the system as it
existed with one-third commercial parts.

(1)  The total failure rate of the present system was estimated, exclusive of
special parts, unusual applications, and mechanical operations.

(2)  One-third of this total, assuming a uniform distribution of part types and
failure rates, was increased by a factor of ten. This was the assumed
higher failure rate of commercial parts.

(3)  The resulting rate was added to the system, along with the failure rates
applicable to the unusual parts or unusual part applications.

(4) From this total, a probability of survival was estimated and the product

of this and the probabilities of the one-shot devices gave an over-all reli-
ability estimate.
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APPENDIX A
ANALYTICAL DETERMINATION OF SERT BALANCE

AND MOMENTS OF INERTIA
(Configuration C)

1. General
This appendix describes the analytical determination of the balance (static and
dynamic) and the moments of inertia for the SERT spacecraft. The final configuration

(C) is considered.

2. Analytical Relationships

The expression for the static unbalance of the SERT spacecraft, whose reference
axes are described in Figure A-1 are:

k k
X, > wo= Y Wox (A-1)
n=1 n=1
and
k k
v, 2 W= > Wy (A-2)
n=1 n=1
where
. . th . . . .
w is the weight of the n  discrete weight element (in this case, spacecraft
n component),
X ¥y are the X- and Y-components of distance from the center of the axis

system to the center of mass of the nth component, and

X s ?0 define the location of the composite center of mass with respect to the
reference axes.

7
Similarly, the location of the total center of mass along the Z-axis is given by:

k k
z = X wz)/L W) (A-3)
=1

o n
n=1

where z,, is the Z-component of distance from the center of the axis system to the
center of mass of the nth component.
A-1



MERCURY-BOMBARDMENT
ENGINE
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\ | 4
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CENTERLINE OF THE SPACECRAFT

Figure A-1. SERT Reference Axes

In the engines-folded condition, SERT must be statically balanced to 50 ounce-inches;
i.e., the right-hand summations of equations (A-1) and (A-2) must be within this value.
The only requirement on the engines-extended condition is that the center of mass

be known.

The relationships for the dynamic unbalance about the X-, Y-, and Z-axes passing
through the center of mass are:

k k k
€& Jyozo © g Wn Xt z_ (B Jdyp)n - %0 %o 2 Yho @a-y
n=1 n=1 n=1
k k %
gJYozo - zl W Yn? * nzz: & J}’Z)n“y %o n=1 Wn (A-5)




where
g is the acceleration due to gravity,

J » J aré products of inertia with respect to the reference axes, and
X0 ZO yYozo

sz, Jyz are the products of inertias of the individual components, about
axes parallel to the reference axes and passing through the
individual center of mass. The remaining symbols have been
defined for equations (A-1i) and (A-2).

The dynamic unbalances, g Jxq ;o and g Jyg z9, cannot exceed 200 ounce-inches in the
engines-folded condition, and must be known in the engines-extended condition.

The X- and Y-principal axes may be located using Mohr's circle and the relationship:

k k k
g = ¥ Wxy+ Y (€J)-xy 2 W (A-6)
X0 yo = n nn a=1 xy)n oo 23 n
The moment of inertias are expressed as follows:
k N k 2 k
= + 1
g IXO yo z Wnyn + z__ Wn Zn ; (g xx)n
=1 n=1 =1
(A-T)
k 2 k
-v2 -z
Yo 2 Wn Zo 2 Wn
n=1 n=1

gl =
yoyo n=1 n n n=1 n n n=1 yy n
(A-8)
k k
-x 2 > w -7 ° >y W
o n o n
n=1 n=1



k 9 k k
g Z0 Z0 - z Wn xn + z Wn yn + z_:_ (g Izz)n
n=1 n=1 n-=
(A-9)
k k
—9 —2
- X Y wo-Y, ) W
n=1 n=1

where

are mass moments of inertia about the reference X-, Y-,

I y 1 » I
X0X0' 'yoyo  Z0ZOo and Z-axes.

3. Calculations

Table A-1 summarizes the tabulations of the balance and moment of inertia con-
tributions of the various components, and, in addition, important summations for
e‘ngines-folded balance (with balance weights) and engines-extended unbalance.

a. Static and Dynamic Balance

The tabulations for static and dynamic balance are given in columns 1 through
7 and 11, 12, and 13 of Table A-1. Subtotal A (fixed components) and subtotal B
(moving components in folded condition) are summed with balance weights (C) selected
such as to give Z wWx = 0, ZWy =0, E Wxz = 0, and ZWyz = (0. Note that the second
and third terms in equations (A-4), (A-5) and (A-6) are not considered; the individual
products of inertia were found to be negligible for the purposes of the analytical inves-
tigation, and the third item is zero in each case since the balance weights provide for
X, =§o =0. The Z-axis location of the center of mass as given by equation (A-3) is

—  -267.20

= ==0,74 i fb late).
z, 362, 10* 0.74 inches (below top of baseplate)

*Note that the final computed weights are approximately ten pounds less than the
equivalent empirical weight of the T-3 spacecraft. This 3-percent difference is due
to a combination of (1) a special umbilical and circuit for cooling the cesium-contact-
engine inverter added at NASA request, (2) harness tacking and potting added after
assembly, (3) a different final balance-weight configuration, (4) additional miscellan-
eous hardware, and (5) uncertainties in actual T-3 hardware weights.




Component

COMPONENT Yo. W (lbs) X (in) Y (in) Z (in) WX wY
Mercury-Bombardment-Engine DC Power Supply 1A 30.43 3.92 9.16 -6.25 119.29 278.74
Mercury-Bombardment-Engine AC Power Supply 1B 30.18 -2.90 -10.66 -6.55 -87.52 -321.72
Cesium-Contact-Engine Inverter 2A 7.89 12.62 0.00 1.10 99.57 0.0
Cesium-Coniaci-Engine AC Power Supply 2B 16.29 7.60 -8.717 2.81 123.80 -142.86
Cesium-Contact-Engine DC Power Supply 2C 9.82 -8.14 8.00 2.12 -79.93 78.586
Cesium-Contact-Engine Control Box 2D 6.75 -8.35 9.75 7.28 -56.36 65.81
Telemetry Converter 3A 3.30 7.317 7.10 1.60 24.32 23.43

| Telemetry Converter 3B 3.26 -7.40 -7.10 1.60 -24.12 -23.15
Baseplate 4A 10.72 0.0 0.00 -0.40 0.0 0.0
Upper Column . 4B 3.16 0.0 0.00 -5.70 0.0 0.0
Lower Column ) 6.98 0.0 0.0 -11.28 0.0 0.0

| Ground Plane, Clamp, & }

Squib \ 43 0.50 0.0 0.0 _11.50 0.0 0.0
Ppallet Spacer 4 0.27 0.0 0.0 -8.40 0.0 0.0
Mercury-Bombardment-Engine Neutralizer Power

Supply & Transformer 5A, 5C 9.79 -7.15 0.10 2.45 -70.00 0.98
Mercury-Bombardment-Engine NVCU 5B 3.12 0.42 -2.50 13.00 1.31 -7.80
Main Battery 6A 27.98 0.50 9.46 2.60 13.99 264.69
Main Battery 6B 27.98 -0.80 -9.46 2.60 -22.38 -264.69
Telemetry Battery 7 10.71 -11.70 0.17 2.00 -125.31 1.82
Programmer 8 11.55 1.55 -2.50 5.85 17.90 -28.88
Mercury—Bombardment—_Engine Magnetic Field Sup- 9A, 9B 9.79 9.30 -0.08 2.45 91.05 -0.78

ply & Voltage Transducer
Signal Conditioner 10, 19A 7.76 2.87 2.23 6.38 22.27 17.30

(& commutators) & 19B
Telemetry SCO 11A 1.15 -1.30 10.14 6.40 -1.50 11.66
Telemetry SCO 11B 1.15 1.00 -11.64 6.40 1.00 -13.39
Telemetry Power Amp 12A 1.43 2.52 10.14 6.70 3.60 14.50
Telemetry Pwr Ampl 12B 1.43 -2.74 -11.64 6.70 -3.92 -16.65

- Command Subsystem 13A;13B 5:10 00 050 5:92 00 60
Power Switching Unit 1A 6.29 -2.30 2.55 4.65 -14.47 16.04
Distributor Frame Assy. 14B 4.87 0.40 0.58 5.42 1.95 2.83
Transmitter 15A 1.41 7.50 11.60 2.50 10.58 16. 36

Mount 0.80 6.50 11.15 1.90 5.20 8.92
Transmitter 15B 1.41 ~8.65 -11.65 2.50 -12.20 -16.43

Mount 0.80 -8.45 -11.20 1.90 -6.76 -8.96
Ion-Beam Probe Signal Cond. 16B 3.00 7.44 ~9.05 -4.40 22.32 -27.15
Squib for release A 0.15 -5.50 1.50 -7.50 -0.83 0.28

of engines B 0.15 4.70 3.50 -8.00 0.71 0.5%
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TABLE A-1. SERT BALANCE AND
MOMENT OF INERTIA COMPUTATION -

T-3 SPACECRAFT

wz wx wy? wz? WXz wYZ wZY g Ixx g Iyy g Izz
~190.19 467.6 2553.3 1188.7 -745.6 -1742.1 1092.7 326 386 370

1 -197.68 253.8 3429.5 1294.8 573.3 2107.3 933.0 324 385 366

i 8.68 | 1256.6 .0 9.6 109.5 0.0 0.0 110 7 109
45.77 540.9 i252.9 128.6 347.9 -401.4 -1085.7 102 120 120
20.82 651.0 629.0 44.0 -170.0 167.0 -640.0 45 45 49

| 49.14 471.0 642.0 358.0 —410.3 479.1 -550.0 31 31 34

1 5.28 179.2 166.4 8.5 38.9 37.5 172.7 11 5 9

5.22 178.5 164.4 8.4 -38.6 -37.0 171.3 11 5 9
-4.29 0.0 0.0 2.0 0.0 0.0 0.0 563 56.3 1127
-18.01 0.0 0.0 102.7 0.0 0.0 0.0 41 41 61
-78.73 0.0 0.0 888.1 0.0 0.0 0.0 66 66 126

!

\ -5.75 0.0 0.0 66.0 0.0 0.0 0.0 - - -
-2.27 0.0 0.0 19.0 0.0 0.0 0.0 - - -
23.99 501.0 0.0 59,0 -172.0 2.0 -7.0 58 28 50
40.56 1.0 30.0 527.0 17.0 ~101.0 -3.0 5 38 38

| 72.75 7.0 2504.0 189.2 36.4 688.2 132.4 260 260 379

‘ 12.75 17.9 2504.0 189.2 -58.2 -688.2 217.8 260 260 379
21.42 | 1466.0 0.0 43.0 -251.0 4.0 -21.0 74 37 70

| 67.57 28.0 72.0 395.0 105.0 -169.0 -45.0 116 174 97

! 23.99 847.0 0.0 59.0 223.0 -2.0 -7.0 58 28 50
49.51 64.0 39.0 316.0 142.0 110.0 50.0 1 2 2

7.36 2.0 118.2 47.0 -9.6 74.6 -15.2 1 2 2
7.36 1.0 115.9 47.0 6.4 -85.17 -11.6 2 2 2
9.58 9.1 147.0 64.0 24.1 97.2 36.5 2 2 2
9.58 10.7 193.8 64.0 -26.3 -111.5 45.6 2 2 2
-30.19 0.0 0.0 179.0 -0 0.0 | 0.0 75 75 125
29.25 33.0 41.0 136.0 -67.0 75.0 -37.0 68 71 19
26.40 0.8 1.6 143.1 10.6 15.3 1.1 126 161 181
3.53 79.4 189.8 8.8 26.5 40.9 122.7 4 5 4
1.52 34.0 99.0 3.0 10.0 17.0 58.0 - - -
3.53 105.5 191.4 8.8 -30.5 -41.1 142.1 4 5 4
! 1.52 57.0 100.0 3.0 -13.0 -17.0 76.0 - - -
-13.20 166.1 245.7 58.1 -98.2 119.5 -202.0 9 9 9
-1.13 4.6 0.3 8.5 6.2 -1.7 -1.3 - - -
-1.20 3.3 1.9 9.6 -5.7 4.2 2.5 - - -

— Form Ne.ESIS
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Component

w ﬂbg)

COMPONENT No. X (in) Y (in) Z (in) WX wY
Mercury-Bombardment-Engine Arm Brackets (2) 0.81 10. 00 0.0 -2.10 8. 10 0. oj
Cesium-Contact-Engine Center Arm |
Bracket (1) 0.79 ~9.60 0.0 -2.32 -7.58 0.0
Cesium-Contact-Engine Side Arm j4
Brackets (2) 17 0.56 -9.35 0.0 -1.82 -5.24 0.0 ‘
Mercury-Bombardment-Engine Damper (1) 1.93 8.70 0.0 -3.30 16.79 0.0
Cesium-Contact-Engine Dampers (2) 3.86 -7.50 0.0 -4.10 -28.95 0.0

| Coupling Network 20A 2.33 0,0 0.0 -10, 40 0.0 0.0 l
A-R Diplexer 20B 1.20 4.93 -8.44 -2.90 5.92 -10.13
Sun Sensor 21A 0.78 -2.60 13. 00 ~-3.25 -2.03 10. 14 j
Sun Sensor 21B 0.78 5.34 -13.00 -3.25 4.17 -10. 14 |
Precession Damper 27A 1,24 10.40 7.10 0.0 12.90 8. 80ﬂ
Precession Damper 27B 1.24 ~10.40 -7.10 0.0 -12. 90 -8. 8%
Antenna & Cabling 29 0.56 0.0 0.0 -12.50 0.0 0.0

Conn, etc.) 30 15.50 0.0 0.0 5.50 0.0 0.0 l
Misc. Hardware 1.77 0.0 0.0 0.0 0.0 0.0
Underside Mounting ‘
Blocks 32A 0.43 -4.70 -4.57 -1.30 -2, 02 -1.97

B 0.43 -8.38 -5.80 =1.30 =3.60 ~2.49

C 0.43 -7.20 ~-10.82 -1.30 -3.10 ~4.65

D 0.43 2.50 -12.72 -1.30 1.08 -5.47

E 0.43 2.10 =10. 55 -1.30 0.90 ~4.54

F 0.43 2.60 -6.08 ~-1.30 1.12 -2.61
G 0.43 5.93 4.00 -1.30 2.55 1.72
H 0.43 8.69 5.75 -1.30 3.74 2.47
I 0.43 9.10 9.20 -1.30 3.91 3.96 {

J 0.43 0.09 13.27 -1.30 0.04 5.71

K 0.43 -3.87 9.95 -1.30 ~1.66 4.28
\- . ) - L 0.43 -1.45 6.82 -1.30 -0.62 2. 934
M 0.43 6.77 ~6.75 ~1.30 2.91 -2.90
N 0.43 7.45 -11.05 -1.30 3.20 -4.75 1‘

[8) 0.30 3.78 -6.44 -1.30 1.13 -1.93

P 0. 30 3.90 -10.95 -1.30 1.17 -3.29

Q 0.30 6.08 -10.54 -1.30 1.82 -3.16

R 0.30 5.48 -5.98 -1.30 1.64 -1.79

S 0.30 5.98 -4.20 -1.30 1.79 -1.26

T 0.30 6.09 -2.75 ~1.30 1.83 -0.83

Underside Mounting U 0.30 9. 07 -4.28 -1.30 2.72 ~-1.28

Blocks 32V 0.30 9.00 ~2.80 -1.30 -0.70 -0.84

p S
\
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TABLE A-1.

SERT BALANCE AND
MOMENT OF INERTIA COMPUTATION —

T-3 SPACECRAFT (Continued)

WZ wx?2 wy? wz2 WXZ wYZ WXY glxx glyy glzz
-1.70 81.0 0.0 3.6 -17.0 0.0 0.0 3 2 3
-1.83 72.8 0.0 4.3 17.6 0.0 .0 1 1 1
-1.02 49.0 0.0 1.9 9.5 0.0 0.0 9 2 9
=6.37 146. 1 0.0 21,0 -55.4 0.0 0.0 2 5 5
-15. 83 217.1 0.0 64.9 118.7 0.0 0.0 19 10 25
-24.23 0.0 0.0 252.0 0.0 0.0 0.0
-3.48 29.2 85.5 10.1 -17.2 29.4 -50.0 4 1 4
-2.54 5.3 131.8 8.3 6.6 -33.0 -26.4 2 2 0
_2.54 22.3 131.8 8.3 -13.6 33.0 -54.2 2 0
0.0 134.2 62.5 0.0 0.0 0.0 91.6 26 26 0
0.0 134.2 62.5 0.0 0.0 0.0 91.6 26 26 0
-7.00 0.0 0.0 88.0 0.0 0.0 0.0
85. 25 0.0 0.0 468.9 0.0 0.0 0.0 821 821 1423
0.0 0.0 0.0 0.0 0.0 0.0 0.0 210 210 420
-0.56 9.5 9.0 0.7 2.6 2.56 9.23
-0.56 30. 2 14.4 0.7 4.7 3.24 20.88
-0.56 22.3 50.3 0.7 4.0 6. 05 33.54
-0.56 2.7 69.6 0.7 -1.4 7.11 -13.74
-0.56 1.9 47.9 0.7 -1.2 5. 90 -9.50
-0.56 2.9 15.9 0.7 -1.5 3.39 -6.81
-0.56 15.1 6.9 0.7 -3.3 -2. 24 10. 20
-0.56 32.5 14.2 0.7 -4.9 -3.21 21.51
-0.56 35.6 36.4 0.7 5.1 -5.15 35.97
-0.56 0.00 75.8 0.7 -0.1 -7.42 0.53
-0.56 6.4 42.6 0.7 2.2 -5.56 -16.52
-0.56 0.9 20.0 0.7 0.8 -3.81 -4.23
-0.56 19.7 19.6 0.7 -3.8 3.71 -19.64
-0.56 23.8 52.5 0.7 4.2 6.18 -35.36
-0.39 1.3 12.4 0.5 -1.5 2.51 -7.28
-0.39 1.6 36.0 0.5 -1.5 4.28 -12.81
-0.39 11.1 33.3 0.5 -2.4 4.11 -19.18
-0.39 3.0 10.7 0.5 -2.1 2.33 -9.81
-0.39 10.7 5.3 0.5 -2.3 1.64 -7.52
-0.39 1.1 2.3 0.5 -2.4 1.08 -5.03
-0.39 24.7 5.5 0.5 -3.5 1.66 -11. 64
-0.39 24.3 2.4 0.5 -3.5 1.09 -7.56

Form No- ESIS
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COMPONENT C°m§:“°“t W (Ibs) X (in) Y (in) Z (in) WX wY
| Radial Accelerometer & _23§ 5.00 -6.35 9,40 -5.45 -31.75 47,00 ||
Mounting Bracket 2.34 -4.20 6.25 -5.00 -9.83 14.63
Ion-Beam Probe SPS 38 1.71 7.50 -4,20 -4,40 12.83 -7.18
Sun Sensor Volt. Reg. 40 0.20 -1.30 -11.53 -2.20 -0.26 -2.31
D.C. Amplifier 41A 0.40 5.50 2.00 13.00 2,20 0.80
D.C. Amplifier 41B 0.40 1.20 2.00 13.00 0.48 0.80
Duplexer Ballast Load 42 0.82 2.20 11.00 -0.45 1.80 9.02
Flyaway Mounting Block 0.15
Fuse Block 44 0.79 0.50 7.30 6.40 0.40 5.77
Auxiliary Command Unit 37 1.39 -0.80 -7.10 6.70 -1.11 -9.87
SUBTOTAL A 322.34 42.75 -44 .22
Ion-Beam Probe Ass'y 16A 3.10 10.95 —4.75 -3.90 33.95 -14.73
Cesium-~Contact Ion Engine 18 14.00 -10.20 0.0 -10.40 -142.80 0.00
Mercury-Bombardment-Engine Mounting Arm 22 1.41 11.75 0.0 -3.65 16.57 0.00
Cesium-Contact-Engine Mounting Arm 23 0.91 -12.00 0.0 -3.10 ~10.92 0.00
Mercury-Bombardment Ion Engine 28 11.60 10.20 0.0 ~10.50 118.32 0.00
Detuning Wing 31A 0.20 0.0 12.80 -9.00 0.0 2.56
Detuning Wing 31B 0.20 0.0 -12.80 -9.00 0.0 -2.56
SUBTOTAL B 31.42 15.12 -14.73
Balance Weights
( X1 4,13 -14.00 0.00 1.26 -57.87 0.00
c {Kg 3.33 0.0 14.00 -9.30 0.00 46.62
(K3 0.88 0.0 14.00 0.00 0.00 12.32
TOTAL (Engines 362.10 0.00 0.00
Folded) (A + B+ C)
Ion-Beam Probe Ass'y 16A 3.10 15.40 -4.75 -2.20 47.74 -14.73_:
————{Cesium—Contact Engine 18 13.15 -21.75 0.30 -3.35 -286.01 3.94
Mercury-Bombardment—Engine Mounting Arm 22 1.41 14.95 0.00 -1.40 21.08 0.00
Cesium-Contact~Engine Mounting Arm 23 0.91 -14.30 0.00 -1.70 -13.01 0.00
Mercury-Bombardment Ion Engine 28 11.60 20.25 0.00 ~1.35 224.90 0.00
Detuning Wing 31A 0.20 0.0 21.80 1.00 0.00 4.36
Detuning Wing 31B 0.20 0.0 -21.80 1.00 0.00 -4.36
SUBTOTAL D 30.57 4.70 -10.79
TOTAL (Engines Ex- 361.25 -10.42 +3.93
- tended (A + C + D)
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TABLE A-1.
MOMENT OF INERTIA COMPUTATION -

SERT BALANCE AND

T-3 SPACECRAFT (Continued)

wZ wx? wy? wz? WXZ wYZ WXY g Ixx g Iyy g lzz
-27.25 | 201.6 441.8 148.5 173.0 | -256.2 -298.5 24 24 24
-11.70 41.3 91.4 58.5 49.2 -73.2 -61.4
-7.52 96.2 30.2 33.1 -56.5 31.6 -53.9 1 3. 3,
-0.44 0.3 26.6 1.0 0.6 5.1 3.0 - - -
5.20 12.1 1.6 67.6 28.6 10. 4.40 - - -
5.20 0.6 1.6 67.6 6.2 10.4 1.0 - - -
—0.37 £.0 99.2 0.2 -0.8 4.1 19.8 - -
5.06 0.2 42.1 32.4 2.6 36.9 2.9 - - -
9.31 0.9 70.1 62.4 -7.4 -66.1 7.9 3 4 5
49.63 9388.7 | 17,323.8 8092.1 -204.9 |  386.41 251.63 3908 3954 5717
-12.09 372.0 70.0 47.0 -132.0 57.0 -161.0 1 6 12
-145.60 1457.0 0.0 1514.0 1485.1 0.0 0:0 224.0 112 224
-5.15 194.7 0.0 18.8 =60, 0.0 0.0 - - -
-2.82 131.0 0.0 8.7 33.9 0.0 0.0 - - -
-121.80 1206.9 ° 0.0 1278.9 -1242.4 0.0 0.0 79 64 79
-1.80 0.0 32.8 16.2 0.0 | -23.0 0.0 - - -
-1.80 0.0 32.8 16.2 0.0 23.0 0.0 - - -
-291.06 3361.6 135.6 2899.8 84.1 57.0 - 317 182 315
5.20 810.2 0.0 6.6 ~72.8 0.0 0.0 - = =
-30.97 .0 652.7 288.0 0.0 | -433.6 0.0 - - -
0.0 0.0 172.5 0.0 0.0 0.0 0.0 - - -
267.20 | 13560.23 | 18284.6 | 11350.9 0.0 0.0 181.26 4225 4136 6032
735.0 70.0 15.0 -105.0 32.0 -227.0 14. 6. 12.
52210 1.0 148.0 958.1 | -13.2 -86.0 224. 112 224
315.1 0.0 2.8 -29.5 0.0 0.0 - - -
186.0 0.0 2.6 22.1 0.0 0.0 - - -
4756.7 0.0 21.1 -317.1 0.0 0.0 79 64 79
0.0 95.1 0.2 0.0 4.36 0.0 - - -
0.0 95.1 0.2 0.0 -4.36 0.0 - - -
12213.8 261.2 189.9 528.6 18.8 -313.0 317 182 315
22412 7 18410.2 8576.6 250.9 -28.39 29.26 4225 4136 6032

“Form No.ESI5
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The engine-extended relationships may be derived from subtotal D and equations (A-1)

through (A-6), as follows:

— _ -10.42 .

X = 3e125 = 0. 029 inches.

— _ +3.93 _ .

yo = J6105 - 0.011 inches.

7 = ﬂg_ = - 0.127 inches.

(] SOC1. 4o

About axes parallel to X, Y, and Z and passing through the center of mass:

2
= . - -—Ue "‘0- . = . —1i
g3 o= 250.9 - (-0.029) (-0.127) (361.25) = 249.6 Ib~in
2
= .39 - (0. -0. . = 27, i
g Jyozo 28.39 - (0.011) (-0.127) (361.25) = 27. 88 Ib-in
2
= 29,26 - (-0.029) (0.0 .25) = . -1i
g9 0v0 ( ) (0.011) (361.25) = 29.37 lb-in

b. Moments of Inertia

The tabulations for the moment-of-inertia calculations are presented in col-

umns 8, 9, 10, 14, 15, and 16 of Table A-1. For the engines-folded conditions, equations
(A-7), (A-8), and (A-9) yield the following (for axes parallel to X, Y, and Z and passing

through the center of mass):

2
g Ixoxo = 18,284.6 + 11,350.9 + 4225 - (-0. 74)2 (362.10) = 33,662.2 lb-in

2
gl = 13,560.2 + 11,350.9 + 4136 - (-0. 74)2 (362.10) = 28,848.8 lb-in

2
gl = 13,560.2 + 18,284.6 + 6032 = 37,876.8 lb-in
Z0Z0

For the engines-extended conditions, the moments of inertia about axes parallel to
X, Y, and Z and passing through the center of mass are:

2
18,410.2 + 8,576.6 + 4225 - (0.011)2 (361.25) - (-0.127) (361.25)

0.
|

I
X0 X0

2

31,206.0 1b.-in
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22,412, 7+ 8,576.6 + 4136 - (-0.029)2 (361.25) - (-0. 127)2 (361.25)

e IYO yo

35,119. 2 Ib-in2

22,412.7 + 18,410.2 + 6032 - (—0.029)2 (361.25) - (0. 011)% (361. 25)

09
1l

I
2070
.2
= 46,854.6 lIb-in

The location of the principal axes and values of principal moments of inertias for
the engines-extended case are given by the characteristic equations:

Qroxo ™20 %~ Jxoyo’s-Jxozoy= ©
-Jxoyoa+ayoyo-)‘)ﬁ "Jyozo‘y= ©
—Jxozoa-lyozo B+l 2 2=0

where a, B, and vy are the direction cosines to the principal axes.

Solution of these equations will show that the principal axes are within several degrees
of the geometric axes and the inertia values are essentially equivalent to those for the

geometric axes.
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APPENDIX B
SIGNAL-CONDITIONING DATA

This appendix lists the signal-conditioner characteristics for each telemetered param-
eter; also given are the channel assignments for each parameter. Note that redun-

dancy is provided in iwelve of the major signals; these major parameters are assigned
to two channels.
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APPENDIX C
TELECOMMUNICATIONS ANALYSIS

1. General

The majority of the following material is drawn from RCA Report SERT TM-1101,
Telemetry Subsystem Design Report, dated July 30, 1962. In spite of some minor
system changes since the report, such as the addition of the radial accelerometer and
the changing of the subcarrier-deviation ratios, the basic design remained conserva-
tive and in keeping with mission requirements.

The function of the SERT telecommunications subsystem was to retrieve data during the
flight of the SERT spacecraft. This datashould, wherever possible,be inaformat which
lends itself to reception and reduction by standard telemetry ground stations. During the
program, particular attention was paid to the capability existing at Wallops Island to
insure a maximum degree of compatibility with that telemetry station.

2. Data Requirements

Data to be transmitted from the spacecraft falls into one of the following three categories:

a. Engine and Spacecraft Parameters

This data consists of a total of 80 parameters to be measured during flight.
The specified maximum frequency response requirement for any one channel is 1 cps.
Parameters include voltages, currents, and other measurements, pertinent to engine

performance, which have been converted into voltages and-curre; ble-to-the

telecommunications subsystem.

b. Engine Thrust

The engine thrust is measured by observing the change in spacecraft spin rate
produced by each of the engines, in turn; the thrust of the engine is used to provide a
torque which either increases or decreases the spin rate of the spacecraft.




c. Spacecraft States

The spacecraft is programmed to go through a definitive operation cycle during
flight. The possible states of the spacecraft, at any time during the flight, are con-
firmed via the telecommunications subsystem. Receipt of commands by the space-
craft are also confirmed via this subsystem.

3. System Design

a. General

To ensure some measure of reliability, two almost identical communications
links were selected. Critical telemetered parameters are divided between the two
links to insure that some pertinent data from each system will be telemetered even if
a malfunction occurs in one of the links.

For compatibility with existing equipment at Wallops Island, and to utilize proven 'off-
the-shelf'" equipment, a standard fm-fm telemetry was chosen as best satisfying the re-
quirements of the SERT spacecraft. A multi-subcarrier approach with PAM (pulse
amplitude modulation) commutation was selected in favor of other techniques (e.g.,
digital) because of its simplicity and compatibility with existing ground facilities. The
three separate subcarriers were selected based on the differences in the data response
requirements, as well as need to separate the individual types of data. The 10.5-ke
channels of both communications links were used to transmit basic engine-performance
data with complete redundancy. Similarly, because of its importance, completely re-
dundant active links were specified for the spin-rate data on the 7.35-kc channels.

The lesser importance of the programmer and command-status information, which in
many cases may be inferred from the engine-performance data, dictated the assignment
of non-redundant channels to each of these.

b. RF Bandwidth Considerations

To conserve transmitter-power, the telecommunications subsystem rf band-
width was kept to a minimum, consistent with the data and stability requirements for
bandwidth.

‘e




{ (1) Data Bandwidth Requirements

The maximum subcarrier frequency required for each of the two systems
is that necessary to accommodate the 40 channels of data which are time-division
multiplexed. Adding two channels for frame synchronization and another three for
zero, full scale, and mid range calibration, a 45-channel commutator is required.

A two sample-per-second rate is sufficient to accommodate 1 cps for each channel, so
that the resulting PAM train is at 90 pps. A baseband of 330 cps (a standard IRIG
lowpass filter value) is more than sufficient to provide good pulse reproduction. Sim-
ilarly, IRIG standards dictate a minimum subecarrier frequency of 10.5 ke to accommo-
date this wave train. Thus, the maximum baseband frequency for the rf portion of the
subsystem is the upper band edge for the 10.5 ke SCO or 11,288 cps.

S (f ) ] = 11, 288 cps = maximum rf baseband requirement.
sc¢’maximum

(2) Doppler shift

" The maximum doppler carrier shift will occur when the rocket has reached
burnout and, thus, has maximum velocity in a direction away from the observer. Re-
entry will not be a problem, since spacecraft motion will be nearly tangential to the
observer. Assuming a 200-mile altitude at burnout:

. v = 7.55 x 103 meters/second;
max
Vmax Vmax 6
Doppler shift = xf = X 245 x 100 T 6.2 ke;

C c C

8
Where C = velocity of light = 3 x 10" meters/second.

Since spacecraft motion is away from the observer at this point in flight, the doppler

shift will be i ‘ = . > figure
represents the total doppler frequency shift which may be anticipated.

(BW)D = 6.2 ke = Required r-f doppler bandwidth.




(38) Frequency Stability Requirements

State-of-the-art spacecraft transmitter specifications show that a reason-
bandwidth required for this

able transmitter frequency stability is * 0.01%. Thei.f.

factor is

- 6
2x 0,01 x10 2x245x10 =49 kc;

S. (BW) g~ 49 ke = Bandwidth required to accommodate frequency
instability.
(4) Frequency-Deviation Allotment
In keeping with the preceding numbers, the permissible deviation is
found as follows: .

W - BW

Fa~ 2 ’

Where (BW)yf isthe system i.f. bandwidth and BW is the bandwidth required due to all

of the previous considerations.

BW = (BW) + (BW)g * 2 (f_ ) maximum = 77.7 ke.

If an i.f. bandwidth of 100 ke is used,

Fd = 11.15 ke.

(5) Transmitter Power Requirements

The spacecraft transmitter requirements may be established through the

use of the free-space propagation relationship:

P =Pt—LFS+GR+Gr-LD-0,

where
Pr is the received power in db relative to one watt,

P ¢ is the spacecraft transmitter power in db relative to one watt,

Cc-4

v



1

[ Xz ]
L_ . is the 10 log

FS !
(41TR)2

GR is the gain of the Teceiving antenna in db,
LD is the spacecraft diplexer loss in db, and
0  is the polarization loss in db.

ollowing parameters are known:

LF S (4000 miles maximum range at a transmitter frequency of 245 mc)
= 158.9 db,

GR (Antenna at Wallops) =29 db,
GT (Isotropic radiation on payload) = 0 db,
LD = 0.5 db,

8 (Power divided between horizontal and vertically polarized receiving
antennas) = 3 db,

and
= + .
Pr Pn + 12 db PM
where

Pn is the noise power in the receiver (100 kc i.f. bandwidth),

13}& is the added margin above thsholimme,mmuMad_
is assumed),

Pn may be found from




where )

K is Boltzmann's constant = 1.37 X 10'23,
T . is system temperature, and
B is system i.f. bandwidth = 100 kc.
TS = Tr + Ta,
where
T is the receiver noise temperature, and

T is the antenna temperature (sky temperature).
Tr = 290 (NF-1),

where NF is the noise factorin absolute units. Assuming a system noise figure of 4db, )
NF = 2.5, and Tr = 290 (2.5-1) = 435° Kelvin.

T, at 250 mc may be taken at 620°K,a conservative numberifthe hottest one percent
of the sky area is excluded. Then Tg = 435 + 620 = 1055°K, and Pp = -148.4 dbw.

From these figures, and using the free-space propagation relationship, the transmitter
power with respect to the system margin may be computed:

-148.4+12+PM=Pt—157+29+0-0.5—3;

Pt =- 5.1dbw + PM.

If a transmitter with a power of 10 watts is used, the resulting system margin above fm
threshold is 15 db. In actuality, with the use of phase-locked receivers, the system
margin is increased by approximately 5 db from this figure. Since phase-locked re-
ceivers are installed at Wallops Island, the above numbers are conservative. The

margin computed for a 12-db threshold is necessary, however, due to the aforementioned
uncertainty regarding the environment seen by the transmitting antennas during flight.

Thus, a 10-watt transmitter in the spacecraft will provide sufficient received signal
strength to insure that ground receiver inputs will not fall below the fm threshold.




(6) Signal-to-Noise Computation for Commutated Channels

The signal-to-noise ratio at the output of each decommutated channel, as
indicated in the section on rf bandwidth considerations, will be the same as that com-
puted for the wideband PAM train. The rms signal-to-noise ratio for the PAM train

is
172 v ’
N NIF 2 2 fIn
where

is the channel or PAM rms signal-to-noise ratio,

Zln

C is the rms carrier in the i.f.;

N__. is the rms noise in the i.f.;
D. is the deviation ratio of the subcarrier on the carrier;
D_ is the deviation ratio of the PAM signal on the subcarrier;
(BW)IF is the receiver i.f. bandwidth; and

f is the low-pass filter required to pass the PAM waveshape.

The system parameters are

% = 12 db + system margin = 27 db;
‘ D1 = 1 or 0 db (unity deviation ratio is assumed for the subcarrier);
| 788 : .
}r D2 = 0.8 X350 = 1.90r 5.6 db (where 788 cycles is the maximum

allowable deviation on a 10.5 KC
subcarrier, and a factor of 0.8 is
included due to the pedestal);

=1 .
(BW) . = 100 ke;



fm = 330 cycles;
(BW)
3 IF
.5, ope o, (T, - (8
db db db m /db

27 +0+ 5.6 +2+21.8

56.4 db.

This figure includes the margin previously computed. At receiver threshold, S/N is
41.4 db.

Perhaps of more interest is the rms error in full-scale output from each of the chan-
nels. This may be determined by multiplying rms signal-to-noise by a factor of 2/2

(the ratio of peak-to-peak to rms value for a sine wave). Under these circumstances,
S/N peak is 50.4 db at the receiver threshold, or the rms error due to the transmis-

sion path is 0.33%.

Thus the rf transmission link does not limit system resolution under the most adverse
conditions.

(7) Signal-to-Noise Computation for Spin-Rate Data

The spacecraft spin rate is determined by accurately measuring the time
between successive pulses originating in the spacecraft and produced by one of two sun
sensors mounted on the spacecraft rim. These pulses frequency-modulate the 7.35-ke
subcarrier oscillators. Baseband frequency response of the telemetry is not of prime
importance in this instance, since the parameter of interest (time between pulses) re-
quires only that the waveshape of the pulse arriving at the ground station be consistent
from one pulse to the next, as shown in Figure Cc-1.

r
]

Figure C-1. Typical Sun-Sensor Pulses




If the same point on the slope of the rise time is used each time to measure the inter-
val, resolution in time is not predicated upon a pulse with a short rise time. This
method of interval measurement depends on the short-term consistency of circuit
operation both in the spacecraft and on theground. Consistency sufficient to achieve sys-
tem performance in accord with measurement accuracy requirements is easily ob-
tained through the use of standard circuits.

Of interest in this instance is the amount of rms jitter appearing on the leading edge of
the pulse arriving at the ground station., This jitter will result in an indeterminacy in
actual spin-period measurement and may be computed as follows:

T
rms jitter = N x = ’
SP

where
N is the rms noise at the system low-pass output filter,
Tr is the output-pulse rise time, and

SP is the peak-to-peak output signal

A first look at the above expression would seem to indicate that a shorter rise time
will produce less jitter. It must be remembered, however, that in an fm system a
shorter rise time (which results in a correspondingly greater baseband requirement)
results in larger noise output. To be more precise

N « (b) 3/2, and

T = 1.
T 5%

2
Where b is the system baseband, rms jitter < b?'/2 x1/b= bl/ , and a shorter rise

time will increase the rms jitter appearing on the leading edge of the pulse. For this
reason, a relatively large deviation ratio is used on the subcarrier despite the result-
ing rise-time degradation.



e N 1
The rms jitter = S Tr 3,82
output. The rms signal-to-noise ratio at the subcarrier discriminator output may be
computed from the same relationship used previously.

s_. ¢ 5. /% /O
N NIF 1 2 2 2 fm

In this instance,

, where N/S is the rms noise-to-signal ratio at the system

%— = 12 db + system margin = 27 db,
D 1 = 1or 0db,
D 9 = 5 or 14 db (IRIG Std deviation ratio in this case),
fm = 110 cycles (standard for a 7.35 KC subcarrier),
(BW)IF = 100 ke.
Then,
_?\I_ = 27T+0+14+ 2+ 26,6 = 69,6 db.

If a pessimistic attitude is adopted and the margin eliminated,—SI:I- will be 54.6 db. (at
threshold)., The rms jitter in microseconds is found by the previous expression:

- 935 _ 0.35 3.15 milliseconds;

Tr b 110

3

rms jitter = L X 3.15 x 1 x 10 ° = 2.2 usec, and the rms jitter due to

535 2.82
the transmission path will be negligible compared to other factors in the system.,

(8) Signal-to-Noise Ratio for Command and Programmer Channels

These channels, one on each of the two systems aboard the spacecraft,
are assigned a subcarrier frequency of 1.7 ke. With unity deviation ratio on the carrier
and a deviation ratio of five onthe subcarrier, the output signal-to-noise ratio will be at
least as good as that obtained in the other channels,

C-10




APPENDIX D

TELECOMMUNICATION ACCURACY DETERMINATION

The purpose of the SERT telecommunication subsystem is to provide an information
link between the spacecraft and the controlling ground station equipment. The sub-
system will monitor varicus critical physical parameters of interest and provide an
indication of the performance of the various subsystem functions.

To achieve these purposes, six telemetry channels are provided with the following
information assignments:

‘ (1) 10.5-kc channel commutated information
\
| (2) 10.5-kc channel commutated information
) (3) 7.35-kc channel sun sensor 1
: (4) 7.35-kc channel sun sensor 2
i ) (5) 1.7-kc channel programmer telemetry
(6) 1.7-kc channel command decoder telemetry

The two 10. 5-kc commutated channels provide a total of 90 monitored data points.
Each of these two channels operates at 90 pps and provides two complete frames of
information per second. The overall accuracy requirement for the commutated chan-
nels is 5.0 percent from the input to the signal conditioner unit to any of the readout
devices in the ground station.

— ~The actual accuracy capability of the spacecraft and ground-station telemetry equipment
for the commutated channels will be considerably better than 5.0 percent. Zero and
full-scale reference voltages are applied to the commutated channels once per frame
and have an accuracy tolerance of 0.25 percent of full scale (5.0 volts). As a result

of these reference voltages the end points of the readout voltage range are known to
0.25 percent, and the accuracy of intermediate points is only affected by the linearity
tolerances of the various components in the telemetry channels. The total error will
be equal to the square root of the sum of the squares of the errors introduced by the
signal conditioner, linearity errors of the various telemetry components, and the
linearity accuracy of the readout devices.




The following is a list of the tolerances of the components in the commutated tele-
metry channels:

Components Worst case accuracy (x percent)
Signal conditioner 2.0 (worst channel)
Commutator 0.1 linearity

(=]

SCO (10.5kc oscillator) .5 linearity

Transmitter 1.0 linearity for 100 kc deviation

Receiver 1.0 linearity for 150 kc deviation

Discriminator 0.1 linearity taken for best
straight line for bandwidth

Control translator 0.5 linearity

Output converter 0.5 linearity

MMU meters 2.0

Path Loss 0.33

Total calculated error E = + 3. 029 percent (root square sum)

This calculation has been made using a 2.0 percent tolerance for the signal condi-
tioner; actually, all channels with the exception of the AGC circuit exhibit tolerances
in the range of 0.5 percent. If the 14-channel oscillograph is used as the readout
device instead of the MMU meters, the readout device accuracy will actually be 1. 68
percent instead of 2.0 percent. Using these figures for the overall error calculation,
E is found to be 2.43 percent.

The information received on the sun-sensor channels will provide the basis for deter-
mining the acceleration imparted to the spacecrait by the cesium-contact and mercury-
bombardment-ion engines. The accuracy requirement for this information is that the
time interval between succeeding sun pulses be read to 0.1 percent of the spacecraft
spin rate.

The two remaining channels (command decoder telemetry and command programmer
telemetry) have a 5.0 percent accuracy specification. The actual error which can be
expected on these two channels may be calculated from the following list of compo-
nent tolerances.




Channel Component

Signal source
SCO (1.7kc channel)

Transmitter

Receiver
Discriminator
Chart Recorder

Total calculated error, E = 3.5 percent

This calculation is based on the telemetry signals being known to a 1.0 percent

Overall Accuracy (+ percent)

1.0 over environmental range
2.0 over environmental range

1.4 distortion and linearity
for 100 kc deviation

1.0 linearity 150 kc deviation
0.5 overall error

2.0 overall error

tolerance. This tolerance can be achieved by measuring these signals to such toler-
ances during component environmental tests and using this measured data in inter-

preting the received telemetry data.
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APPENDIX E
SPIN RATE CHANGE DUE TO ION ENGINE THRUST

This appendix shows the method used to calculate changes in spin rate which result
from thrust generated during operation of the ion engines.

Operation of the ion engines on board the SERT spacecraft will be initiated approxi-
mately two minutes after the engines have been deployed (following 4th stage separa-
tion). The spin rate of the spacecraft at this time will be approximately 100 rpm.
The cesium-contact engine will be operated first and will decrease the spacecraft spin
rate; then the mercury-bombardment engine will be operated to increase the spin rate.
If the moment of inertia of the spacecraft spin axis, the initial spin rate, the engine
thrust level, and the engine lever arm are known, then the change in spin rate during
engine operation can be calculated.
The following symbols are applicable throughout these calculations:

M is the torque about spacecraft spin axis due to engine thrust;

Yeng is the engine lever arm;
F is the engine thrust;

I is the moment of inertia about the spacecraft spin axis;

w is the spacecraft angular velocity in radians per second;

N is the spacecraft spin rate in revolutions per minute; —

o

w is the angular acceleration;
T is the spin period;
AT is the change in spin period in microseconds; and

At is the time increment in seconds.



The torque about the spin axis can be expressed as
M = Id. (E-1)

Also the spin period can be expressed as

27
T = —
w (E-2)
Differentiating equation (E-2) with respect to time
P o= - 2w .
w? (E-3)
Rearranging equation (E-1) and substituting it into equation (E-3),
. M
T = - -_Z-QE _
w I (E-4)
Torque can also be expressed as
M = F Yepg, (E-5)
and the relation between w and N is
0
N = '3—‘ (35
T (E-6)
Substituting equations (E-5) and (E-6) into equation (E-4)
. -2n F Yeng 1800 F Yeng
T == - = T 3 (E-7)
( m ) 2 I m IN
30/ N

If consistent units are used throughout, we may use the following approximation of
equation (E-7) for small changes in N:

AT 1800 F Ygpo

At m IN (E-8)




Since the ion engines used in SERT are very low-thrust devices, the change in spin
- rate due to their operation will be very small; therefore, small units of measure for
changes in spin period and thrust, microseconds per second and millipounds, re-
spectively, would be most readily useable. The final relationship for thrust is

7IN IQT
F = (E-9)
1.8 x 108 Yp, At

using the following units:

F in millipounds,

Yeng in feet,
. 2
I in slug-ft,
N in revolutions per minute,
. AT in microseconds, and
« At in seconds.

E-3/E-4



APPENDIX F

SPIN RATE ELECTRONICS AND COMMUNICATION
DETECTION ERROR

This appendix describes an experiment that was performed to determine the spin-
period-detection error introduced by the telecommunications, spacecraft, and ground
system. The data was in the form of the measurements between the rise slopes of the
n and the n + 10 pulse. The errors could be introduced by jitter in rise time, by dis-
tortion in frequencies, or by nonlinearities, etc. inherent in the ground readout equip-
ment. These errors and their corresponding sources are discussed in this appendix.

1. Sun Sensor

The information regarding the error in the sun sensor was provided by the Lewis
Research Center. An experiment was performed in which the input to the pre-amp was
a ramp function instead of a response from the solar cell. The results show a jitter
of nine microseconds in the rise time of the output waveform over temperature range
of 100 °F.

2. Subcarrier Oscillator, Communication Link, and Subcarrier Discriminator

These stages were considered together for practical reasons. According to theo-
retical calculations* the jitter due to communication link is in the order of a micro-
second. Since the input to the subcarrier discriminator (SCD) is identical to the output
of the subcarrier oscillator (SCO) with negligible error due to communication, the

communication link can be neglected in studying the SCO-SCD detection error. There-

nentd LD 5P D A cquip C Ct=up as SIIOW

In the experiment, the sun sensor was triggered by a strobe light at a rate of 100 ppm.
The output of the sun sensor triggered the VCO and the "start' count. From the oscilla-
tor to the discriminator, the signalwas 1-volt peak-to-peak. The output of the dis-
criminator triggered the '"stop' count. The counter reads the delay and jitter of the
system to 0.1 microseconds while the recorder printed out the data.

*"RCA Technical Memorandum TM 1101, Telemetry System Design Report' issued
July 30, 1962
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Figure F-1. Block Diagram Showing Test Set-up for Determining
Subcarrier-Oscillator/Subcarrier-Discriminator Error

The accumulated data was analyzed by plotting the number of occurrences of a time
delay (T) versus the time delay. Then the amount of jitter was the variation in the
time delay about a peak which was the most probable value of the time delay. A graph
of data taken over a period of 7 hours on July 30, 1962 is shown in Figure F-2.

The data included three definite curves each of which corresponds to data taken over
a specified period of time. Also, four peaks are displayed each with a jitter of + 2.5
microseconds. If we consider the overall data, the total variation is about 14 micro-
seconds. A closer investigation of the data shows that a large majority of the varia-
tions from one reading to the next are in the order of 1-3 microseconds and that only
a very few variations are in the order of 5 to 7 microseconds. Thus, for the worst
probable case, the jitter should be + 7 microseconds, while in a majority of cases the
jitter should be + 2.5 microseconds.

The cause of the shifting of peaks was not firmly established. A possible source was
a slight variation of the threshold in the triggering level of the start count and stop count;
the latter would explain a change in the most probable delay time.

Analysis of the experimental test data, the sun-sensor jitter of 5 microseconds, and the
fact that a 7. 35-kec VCO would give a larger jitter than a 10.5-kec VCO indicated that a
value for jitter to be used in accuracy calculations should be estimated at about + 7
microseconds.
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Figure F-2. Number of Counts Versus Delay Time (Plus or Minus) Jitter

3. Spin-Rate Detection Rack

The jitter in the electronic detection board was measured and found to be negligi-
ble (+5 microsecond). A considerable error was found due to the counter;
a plus or minus one count error introduces + 10 microsecond error while a pessi-
mistic figure supplied by the manufacturer for the time-base stability accounts for
+ 10 microsecond error. Thus an overall of + 20 microsecond is accountable to the
Spin-Rate Detection Rack.

4. Summary

The accuracy of the system therefore, can be represented as having three major
sources of error:

(1) The sun sensor which introduces jitter of + 9 microseconds;
(2) The SCO-SCD which introduces jitter of + 7 microseconds; and

(3) The Spin Rate Rack which has an inherent error of £+ 20 microseconds.



Since these errors are random, the total error of the system was obtained by taking
square root of the sum of the squares of each individual error. The total system
error was found to be + 23.5 microseconds. The system error will be present in
each ten-cycle time interval which will be recorded.




APPENDIX G
THRUST MEASUREMENT ERRORS

General

This appendix describes some of the important sources of error which can result
when measuring the thrust of the ion engines as a function of changes in spin rate;
errors in spin-rate measurement, however, are not covered in this appendix. It is
shown that none of the errors investigated are very significant with the possible ex-
ception of the one arising during nutation damping. This error also becomes negli-
gible several minutes after ion-engine extension.

2. Thrust-Axis Misalignment Error

An error in thrust measurement will result if the thrust vector is angularly mis-
aligned from its proper orientation; that is, if the thrust vector is not normal to both
the moment-arm vector and the spin axis. I can be shown that this thrust error
€ (F) is

€ (F) = F(@1-cos H),
where
F is the thrust, and

6 is the misalignment error angle.

Cos 6 may be expanded in a power series to give

. 2
(r‘) - 6—- = e o o
2

from which it can be seen that a 1-degree misalignment results in an error of less
than 0.02 percent. Errors in the assumed spin-axis location (i. e., due to "dynamic
unbalance'') are similarly small.

3. Thrust-Axis Offset Error

The engine thrust axes for the SERT are offset from the spin-axis plane con-
taining the c.m. (center of mass) as shown in Figure G-2.




This offset results in a moment about the vehicle X-axis, rotating at the spin rate.
To estimate the effect of this torque on spin-axis motion, we may write the Euler
equations in simplified form, as follows:

o - -0 si ’ , (G-1)
Mx (Iz Iy) (- 8 sin Y + @ Bcos Y) w,
My = (IX - IZ) (écos b + o 0Osin ) 4 and (G-2)
M =1 @ *+. ¢ (G-3)
z z z

where

My, My, and M, are the torques about the principal X, Y, and Z axes of the
spacecraft respectively (these axes are defined in Figure G-1);

I, I, and I, are the moments of inertia about the principal X, Y, and Z axes of
spacecraft, respectively; and

¢, 6, and ¥ are the Euler angles defined in Figure G-2.

Equations (G-1) and (G-2) above, which do not include the terms Ix@y and Iywy
respectively, will provide solutions to the precessional but not the nutational motion.
Since, as will be seen later, precessional motion is extremely small, nutational mo-
tion can be expected, likewise, to be negligible.

For simplicity, the principal X axis shall be assumed coincident with the geometric
X axis; then

M =FZ ., (G-4)
and
M = 0. (G-9)
Substituting the result of equation (G-5) in equation (G-2),
5 = o 6 tan y. (G-6)

Substituting equations (G-6) and (G-4) in equation (G-1),

(IZ _ Iy) .
M =FZ = —— 08w, (G-7)
X eng z

Cos ¥
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Ao,

W

Xe is the engine reference axis (L to F);
Ye is the engine reference axis (|| to F }s
Zp is the spin axis (principal axis);
w s, 18 the spin vector;
F is the engine thrust vector; and
Yeng’ Zeng are coordinates of the engine force vector.
Figure G-1. Spin-Rate and Engine-Thrust Geometry

G-3
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Figure G-2. The Euler Coordinate System

The precession rate is given by
(G-8)

where Wgp is the spacecraft spin rate.

Using equations (G-7) and (G-8), the precession angle can be determined as follows:

F Z% cos (Pt)

2 .
Iz wsp

9=

(G-9)

As anticipated for the rotating torque vector, the precession angle is cyclic at rate
$. The maximum nutation angle for the 1.6-millipound cesium-contact engine, offset
approximately 3 inches from the X-Y plane, is 4.3 x 10-7 radians at a spin rate of

90 rpm. This nutation angle is extremely small and results in a negligible error
either as an apparent angular misalignment or due to a rate effect.




4. Nutation Error

Nutation may be present during ion-engine operation because of spin-axis dis-
turbances arising from spacecraft separation and engine extension. As will be shown,
nutation results in errors in spin rate.

In order to simplify the following solution, a cylindrical inertia distribution is as-
sumed. The results should be generally applicable to the SERT spacecraft. Because
the effect of engine torque is small, it is disregarded.

Figure G-3 shows ihe relationships between the axial, transverse, and total compo-
nents of angular momentum and angular velocity for a nutating body of revolution. The
vector average of the total angular velocity, representative of the average sensed spin
rate w,, of the spacecraft, is

w,, = @, cos 6 + wp sin 6, (G-10)

which is the projection of the angular velocity @ on the total angular momentum H.

Since, from Figure G-3, wZ = _HcIo_SO and w_ = -H—S-I-l-l-l-ﬁ » We may pbta.in from equa-
tion (10) the expression z - P p |
I
__H Z . 2
W = I [1 + 1 ) 1 sin 9] . (G-11)
z p

H=TOTAL ANGULAR MOMENTUM
Ip=MOMENT OF INERTIA, TRANSVERSE AXIS

1, =MOMENT OF INERTIA, SPIN AXIS

W=TOTAL ANGULAR VELOCITY
Wp =ANGULAR VELOCITY, TRANSVERSE AXIS

GZ=ANGULAR VELOCITY, SPIN AXIS

Figure G-3. Angular Momentum and Velocity for a Nutating Body of Revolution



If we define the no-nutation spin rate as wnom = YIL , then, after expansion of sin2 7]
Z

in a power series, equation (G-11) becomes

av _ _av nom _ (2. 4 92 ..., (G-12)
w I
nom nom P
or
ATav Iz 2
i e (G-13)
nom p
where
ATav is the period error, and
T is the no-nutation period.
nom
Fromequation (G-13), we can develop the following expression for the rate of change of .
period as a function of nutation angle rate of change
dT I
av. 47 z de
dt T W ( I 1) 6 dt ° (G-14)
nom P

Since the measure of thrust is angular accelsration, or rate of change of spin period,
we canobserve from equations (G-13) and (G- 14) that a constant nutation angle has no net
effect upon thrust measurement, whereas a change in nutation angle appears as an
apparent thrust error.

It is shown in Appendix J that the quantity 8 -g—f— is proportional to both the spin rate

and to the effective coefficient of friction (u) of the precession dampers. Figure G-4
illustrates the damping behavior for SERT for various effective coefficients of friction
and an initial nutation of two degrees. It is reasonable to assume that the effective fric-
tion coefficient will only decrease as the nutation angle decreases because, as this occurs,
end-bumper impacts will decrease. Since the slope of the damping curve in Figure

G-4 is proportional to d—dr-r%a-l , it may readily be shown that errors due to nutation -

damping will decrease below 10 percent of the cesium-contact engine thrust within 3
minutes.
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APPENDIX H

EFFECT OF THERMAL EXPANSION ON MOMENT
OF INERTIA AND SPIN RATE

1. Purpose
The following analysis has been conducted to obtain an order-of-magnitude value

for the spin-deceleration error resulting from thermal expansion (which changes
moment of inertia) of the SERT spacecraft during flight.

2. Summary and Conclusions

For simplicity, the analysis assumes isothermal distribution over the surface of
the spacecraft. Using this approach, a solution is obtained which shows the spin-
acceleration error to be only several percent of the acceleration resulting from opera-
tion of the cesium-contact engine.

3. Technical Description

(a) Baseplate Expansion

The assumptions of equal mass and temperature distribution over the surface
of the spacecraft permits use of the simple equation

Ar = orAT, (H-1)

where

Ar is the change in radius,
r is the radius,
«a is the coefficient of linear expansion, and

AT is the temperature rise.




The moment of inertia can be expressed as

2

1 =KR7, (H-2)
where
R is the spacecraft radius,
and for small changes,
_ATI_ -2 ﬁ R . sanT. (H-3)
Now
M =’§t‘(1°") = wl + I (H-4)
where
M is the torque,
w is the spin rate, and
Iis fhe spin-axis moment of inertia.
Therefore,
@ =i¥1— - 31"—-:—; T. (H-5)

Using equation (H-3), the rate change due to inertia change is

. W dl w - .
®n = - T 4T T = (2a1) T 200wT. (H-6)

For magnesium, & = 27x 10“6 (Llength per °C). For a nominal spin rate («) of 10
radians per second, and a constant rate temperature rise of 50°C in one hour,

. 50 2
wT—-—2(27x10 )(10)m—-75x10 6 rad/sec’.

The deceleration from the cesium~contact engine, for 1.6 millipounds of thrust, i

M _F _(1.6x10 5@ _

-3 2
= 0.3x10"° rad .
M 1 1 10.5 x rad/sec




| - Therefore, the percentage error is

“17|_17.5x 1078

= 2.25% error.

“ml sx10”
From equation (H-3), the totalchange in moment of inertia over a one-hour period is

AII_ = 20AT = 2 (27x 10'6) (50) = 27 x 1074,

= 0- 27%-

(b) Engine-Arm Expansion

A more detailed analysis should include a possibly large effect due to expan-~
sion of the cesium-contact-engine arm. If we pessimistically assume that the complete
arm increases in temperature as does the engine, the increase in arm length can be
expressed as

AL
E =alL, (H-7)

where
AZ is the increase in arm length,
o« is the coefficient of thermal expansion,
L is the arm length, and
AT is the temperature rise.

. Theinertia can be expressedas

I= Ib + Ie’ (H-8)
where
I is the total spin axis inertia,.
- I, is the '"baseplate' inertia, and

b

Ie is the engine inertia.



Therefore,

I= ib +1. (H-9)
Since
1 (R + L)2 +1I , (H-10)
e p e,
where
m is the engine mass,
Rp is the radius to arm pivot, and
e0 is the engine moment of inertia about its own axis;
then

ie = 2m(R+ L) £ = amER )+ L) x @L) T. (H-11)

The R, term has been neglected since this has, in essence, already been considered
in Paragraph 3(a) above.

A numerical solution to equation (H-11) may be obtained using the following values:

mg = 14 lbs.
(Rp + L) = 22 inches
a =24x10"° (length per °C) (aluminum)
L = 9.5 inches (to center of Hughes engine)
T = 133°C in 32 minutes (assumed linear).

These numbers yield

ie = 2.09x 107° slug-ftz/sec.




Using equation (H-4), we may express the apparent torque error as

w dIe dIe
Te - w? _ ©w dt
w M F(R+L)"

Using a thrust of 1.6 x 1073 pounds (for the cesium-contact engine),

w

T
—£ = 0.73 percent;

“M

which is a pessimistic value.

NOTE: The above analysis neglects a number of second-order effects which would
yield errors considerably smaller than those indicated.

H-5/H-6



APPENDIX J

MODULATION OF SPIN-PERIOD MEASUREMENTS DUE
TO NUTATION

1. Purpose

In this appendix, the modulation of spin period due to the nutation of a spin-
stabilized spacecraft of arbitrary inertia distribution is determined (when the spin
period is measured by the sun-sensor technique). The following investigation was
performed to determine theoretically the small variation about the mean period be-
tween consecutive sun-line crossings, due to small nutations of the spin axis, as
registered by a sun sensor mounted on a spin-stabilized spacecraft having three
distinct principal inertias and no external torques.

2. Summary

The period deviation was determined as a function of time and found to be cyclic
with variable periods. The discarding of products of small order terms in the der-
ivation represents the only approximation involved. A numerical example that
closely approximates the properties of the SERT spacecraft is given, and the magni-
tude of the period deviation is found to be on the order of less than 1/2 percent of the
mean period.

3. Technical Description

The derivation given herein is based on following the sun line as it moves in the
vehicle, thereby takingthe point of view of an observer fixed in the spacecraft as he

watches the sun line rotate about him.

Let O denote the mass center of the vehicle; OX, OY, and OZ the principal axes of
inertia at O; and L, Iy, and I the corresponding inertias. For preciseness, let
values of OX, OY, and OZ be assigned so that I > Ix > Iy, and OXYZ is a right-
handed system. Since this investigation is concerned with a spin-stabilized space-
craft, this choice of body-fixed axes predicates that OZ is the spin axis and, since the
nutation is small, that the Z component of the angular velocity is much greater than
the X and Y components. Then, in the OXYZ system, the angular-velocity vector can
be expressed as

w=wi+w j+w Kk, J-1)



where w, >> both w, and Wy and i, j, and k are unit vectors along the positive X,
Y, and Z axes, respectively.

Let s be the unit vector in the direction of the sun line. From Figure J-1, s is
determined by the declination, ¢, and the azimuth, 7, in OXYZ to be

s = sincgcosni+sinosinnj+cosok. (J-2)

Now, the sun sensor can be imagined as a pair of adjacent, parallel, plane segments,
forming a sandwich, and so mounted on the spacecraft that the spin axis would lie
wholly between the planes if they were extended far enough. Light rays cannot pierce
these planes; the only rays which can enter the device are those passing through the
slit-shaped aperture from outside the spacecraft, and which are directed toward the
spin axis, parallel to and between the planes. It is evident that the location of the
sensor is specified by its azimuth, ranging from 0° to 360°. The sun sensor is de-
signed and mounted on the spacecraft so that it responds to the sun line, S, whenever

the azimuth of § corresponds to the location of that sensor for a large range of dec-
linations not too near 0° or 180°.

Figure J-1. Position of Sun Line in the Vehicle




Suppose that the vehicle is equipped with an infinite number of sun sensors placed
around its periphery. Basically, what follows is the determination of the sun-line
azimuth in OXYZ as a function of time. Indeed, this function defines the vertical
plane instantaneously containing the sun line and, hence, the particular sensor being
activated at each instant.

The first step in determining 1 as a function of time is to compute s from equations
(J-2) and (J-1), set it equal to zero (since5 is fixed in space), and solve for ). Thus:

S = 0=Wx5+( cosgcosn -1 sin 7 sin g) i
J-3)
+(G cos osin N +1) cos N sin o) j - & sin ok.
Expanding wx s and setting the coefficients of i, -j, and k equal to zero, we get:
(Gcosocosn -Nsing sin n) + (wycos o- wzsin o sin 1) =0 (J-3-a)
(6 cos ¢ sin n+1 sino cos n) + (wzsin g cos - wxcos o) =0 (J-3-b)

- 0sing+ (w_sino sin 7 - wysin o cos 1) =0. (J-3-c)

Equations (J-3-a) and (J-3-b) may be combined and expressed as

sin 1 + W cos
wy n o n

no= - wz ¥ tan ¢ ’ 0-4)

Once the right-hand side is determined explicitly in terms of time, equation (J-4) will
be integrated to give 1 as a function of time. This will be accomplished by neglect-
ing all products of small terms, since a closed form integration of equation (J-4)isa
difficult task.

)

We begin by determining the first-order solution to Euler's equations for the angular-
velocity components under no (or negligible) external torques. Neglecting the prod-
uct wx wy, Euler's equations for zero couple may be expressed as '

w = 0 (J-5-a)
I W -(I-I)w w =0 (J-5-b)
X X Yy z 'y z
Iy wy - (Iz - Ix) wz wx = 0. J-5-¢)

J-3



Integration of equation (J-5-a) yields

w = w__, aconstant spin rate. (J-6-a)
z sp

Substituting equation (J-6-2) into equations (J -5-b) and (J-5-c) and solving simultaneously

- J-6-b
@, P o cos (K wspt + B) ( )
w = asin(Kw t+ J-6-C
: K t+ ) (3-6-0)
where
1 -I)I
_z ¥y Yy _p2 —6-
T -1)1 P, (J-6-d)
z X' X
and

(1, - 1)@, - 1)

I 1
XYy

= K 3 (J—6-e)

and where o and B are determined from initial conditions.

No approximations were made in equations (J-5-b) and (J-5-c). Therefore, by eliminating
w, and integrating, the following exact expression is obtained:

2 2

U)x w
5 + y2 = 1, (J—G"’f)

@P)° oy

where a. is a constant of integration (even if a torque acts about the spin axis). Of
course, equation (J-6-f)is notvalidif there is any couple normal to the spin axis.

Since W, and wy always remain small, P can be considered a measure of the elliptic-
ity of w, and wy.

It is appropriate at this point to introduce a spatially fixed coordinate system, and the
Euler angles specifying the orientation of the vehicle in this system. In the case of
zero external moment, the vehicle's angular momentum vector h will remain un-
changed. Let the Zo axis lie in the direction of h. Construct the X0 axis perpendicular




to the Z, axis in the plane formed by Z ; and the sun line. Let 6g be the angle from
Z, to the sun line. The orientation of the vehicle is then specified by the ordered set
of Euler angles ¢, 6, and y as shown in Figure J-2. It can be shown that

. o . sin O sin ¥ a
singcos n sin 68 (cosmcos¢-cos9s1nzp+—t£i—-5—s—) (J-7-a)

. . s . . sinfcosy
sinosinn = sin 6S ( -cos ¢ sin Y - cos B cos Y sin @ +—-) J-7-b)

tan 6
s

These are reduced to first order terms since 6 remains small throughout the motion.

Thus, with the aid of Figure J-2, the components of h along the X, Y, and Z axes
are found to be

wax = h sin 0 sin Y

I w = hsin 6cos J-8
Sy v 7-8)
I1w = hcosB6.

7 Z

—e Yo

Figure J-2. The Euler Coordinate System



Assuming small perturbations in 8 and substituting equation (J-8) into equations (J-7-a)
and (J-7-b), we have the first order approximation to sin 7, and cos 7:

sin GS wax
= O+ —_—
cos 1 Sin g cos ( ) + b tan 6
L S
J-9)
sin 65 [ Iywy 7]
sinm =g | TSRO R
L S
It is seen from Figure J-2 that
w, = Y +cos B¢,
Hence, to first order:
Y +o = wspt + Eo, (J-10)

where

£, =¥+ @tt=0).
Substituting equation (J-10) into equation (J-9) and the result into equation (J-4)
weos(w t+€ )-w_ sin(w t+£)+(lw2+ Iwz) /h tan §
+ X sp o y Sp 0 X X yy s

n=w

sin o
( sin 0 ) tan
S
Finally, by dropping the second order terms in the numerator (noting that ¢ =6 )
andby substituting equation (J-6) into this expression and simplifying, we obtain the
first order approximation for 1) :

. o
=-Ww
n sp +zta.n GS

{ (p +1) cos [(1 1) Wt +Bl] +(p - l)cos[(l—k) wspt+52]}

(3-11)




where

B, =B+ &, and
[0}
Boy=-B+ &; (J-12)

At a particular instant, 7, o, Bl, and ‘32 have the values 170, o, Bl and 8 0
By choosing t = 0 at this instant, and letting A n () = nt) - n, be the increase
inm fromt = 0tot=t, we obtain the following by the integration and simplification
of equation (J-11):

o
Ant) =-w_t+ ———= j(p+1) . (1+k) (1 +k)
sp wsptan és {(1 K sin — wspt cos[ 5 wspt+ﬁlo]

(-1 _. (1-k) (1-k)
+(1-k) sin — wsptcos[ 3 wspt+ BZO]} (J-13)

Now, T, the period for consecutive sun crossings of a particular sensor, is such
that

AN(T) =-27 (J-14)
since 1M is retrogressive with respect to ws

Define A T, a small variation about the mean period, To, by

2w
w
sp

T=T +AT = + AT, (J-15)

and call it the period deviation. Then, by substituting equations (J-14) and (J-15) into
equation (J-13), and by neglecting second order terms and simplifying

o sinmk r(p+1) (=1 3
—_— En) cos ( 310 + k) - (1-K) cos ( 520 - ﬂk)} (J-16)

AT =
2
w,_“tan b
sp s
Equation (J-16) gives the first period deviation recorded by a sensor encountering the
sun at t =0. Suppose we were to wait for t seconds and then compute the period
deviation which would be registered by the sensor encountering the sun at time t.
By this time, ¢ +  would have progressed to w t + £, from equation (J-10), and
w. and w_ would have progressed to Pocos (k LJ; t +°B o) and o sin (k Wyt + Bo),
respectivély, from equation (J-6). Then,from equation (J-12), the values of Bl and Bz



computed at this latter time would be expressed as (k wspt +B) +( Wopt + £) and
-(kwgt + BO) +( wsp t+ %), respectively. Hence, the A T correspondingoto this
latter time, t, would be computed by equation (J-16) again except

(1 +k) wspt +B 10 substituted for BlO

and J-17)

1 -k) wspt + B20 substitute@ for 1320

Substituting equation (J-17) into equation (J-16), we obtain the period deviation as a
function of time:

o sin Tk (p+1)
AT (t) = { cos | (L1+Kk) w t+y
wspz GS (1+Kk) [ sp 1]

_(1+k (-1 _ _
TESES) cos[(l k)wspt+'yz]} (J-18)

where we have set

Y= §0+BO+ mk, and (J-18-a)

Yy = £ =B, - Tk @-18-b)

Equation (J-18) is the primary desired result of this investigation. The predominant
characteristic resulting from the existence of three distinct principal inertias in a
spin-stabilized spacecraft is exhibited in this first-order solution by the parameter
Py . Since I, > IX > in this general case, it can be seen from equation (J-6-d) that
P is not unity, and from equation (J-6-f) that Pis a direct measure of the elliptic
behavior of the transverse angular-velocity components w, and w,. It is for this
reason that the second cosine term is present in equation (J-18); thereby making

A T (t) the superposition of two different frequency components. In general, the ratio
of the two frequencies, (1 +k)/ (1 - k), is not a rational number. Therefore, the
waveform traced out over any time interval will never be repeated; hence, AT (t) is
not a periodic function of time.

For a Body of Revolution:

However, if the vehicle is a spin-stabilized body of revolution, which is
characterized by IZ > IX = Iy, then P is unity and the above difficulties disappear.

J-8




Thus,

Iz - Ispin Ix - Iy - Ipitch

P =1 K = IS/Ip -1

w, = wsp, w = acos (k wsp t+ B) w v = asin (k wspt +8)
6 = const.

I s wsp tan 6 = Ip‘\/wx2 + wyz

for small O then,
I

S
o =— w 6.
1

p

sp

Then for a body of revolution, the delta time reduces from equation (J-18) to

_2 8sin 1k

AT (t)rev. wsp tan 6s

CO

‘yo is a phase
Equation (J-19) gives us justification for callin

the body-of-revolution term, and the second
term.

A Numerical Example:

Assume that I =8,1
,,,,,,,,,,,, _— 2T X

Nutation = 0.9 degrees;
T0 = 0.5 seconds; and
6 = 45°.
s
Then K = 0.45,
p = 1.12

=6,andI =5 (1b. - sec.
'y

p
angle.

g the first cosine term in equation (J-18)
term in equation (J-18) the modulation

2-ft.);

I
s
S[T- wspt A ], (J-19)

J-9



and the delta period is given by

AT (t) =(0.003) To{cos (18.25t +%) - 015 cos (5.67¢ +'y2)} .

The quantity A T(t)/(0.003) T, has been plotted in Figure J-3 over two cycles
for Y1 =72 =0°and v, =Y, = 456°. For comparison purposes, the body-of-
revolution term has been plotted (the dotted curve).

It can be seen that the modulation does not have very much effect. The times of zero
crossings and extremes are not very much different from the body-of-revolution curve.
However, there are two prominent features caused by the modulation. In the plot

for y; = ¥9 = 0, the fourth zero crossing illustrates the 1S-shaped' zero crossing
resulting in a region where the body-of-revolution term and the modulating term are

90 degrees out of phase; and the plot for y; =72 = 45° illustrates the accentuation

of extremes resulting from "beating phase shifting"’ of the modulation. In any case,

the complete time record of AT (t) would display both of these phenomena, regard-
less of initial conditions.

This example closely approximates the properties of the SERT spacecraft. Since P
is close to unity, the low-frequency modulation term amounts to only 15 percent of
the body-of-revolution term. In addition, the entire period deviation is in the
neighborhood of less than 1/2 percent of the mean period.

+1
BODY OF REV

CURVE

+1 8ODY OF

REV CURVE

CYCLES
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4. Flight Data Analysis

It should be noted that the SERT spacecraft, having only two sun sensors (only
one of which provides signals to the spin-rate counters at any one time), will
generate AT only once each revolution. Therefore, the sampling rate will be
lower than that required for discrete reconstruction of the modulation. However,
by utilizing prior knowledge of the spacecraft inertias, the two characteristic
frequencies can be stipulated and, by a study of the flight data, it should be possible
to identify maximum and minimum modulations, certainly of the body-of-revolution
term if not the second-order modulation. A degree of reconstruction, and removal
of the nutation effect from the data, may thus be achieved.

The extensive flight data analysis needed to remove nutation errors would be
required, in the practical case, only if the engine thrust levels were much lower
than anticipated or if the operating times were restricted to several minutes.
Ordinarily, however, a mean-square fit of the period data over several minutes
should suifice to provide acceptable (less than one percent) accuracy. A discussion
of statistical techniques for the handling of spin-period data is presented in
Appendix K.

J-11/3-12



APPENDIX K
THE TREATMENT OF SPIN-PERIOD DATA

1. Purpose

This appendix discusses the treatment and analysis of spin-period data required
to extract the rate of change of period as required for thrust determination. An analy-
sis of errors in the treatment is also presented.

2. Basic Equations
The data provided by the spin-rate instrumentation (sun sensors) during the SERT
flight will be found in the form shown in Figure K-1, with n, the number of cycles

of rotation, as the independent variable, and t, the time, as the dependent variable.

A parabola can now be fitted to the above curve by a least squares fit* using the fol-
lowing equation:

t=a+ Pn + cnz, (K-1)
X
X
X
X
t X
X
X
X
X
n

Figure K-1. Spin-Rate Instrumentation Data

*Statistical treatment of the data should certainly be acceptable in consideration of all
errors except those due to nutation. Nutation errors are discussed in the latter part
of this appendix.



where
a is a measure of the initial time (and of no particular interest to us),
P is the average period of rotation during the time of measurement, and

e is a measure of the change in time of the period, and is therefore a
measure of the angular acceleration.

It can be shown that

1 . L]
PP, and w = - . (K-2)

€
o]
oo |

For simplicity, it will be assumed that a
the expression

0. The least squares fit is then given by

N Zn?t-2n’ Xt
(Z ) z 2 i 1 1 i 1 i 1
P= n, t.|/ n,” C
i il i i Nz ni4 _(z n.2)2
i i

(K-3)

1

If a time measurement is made regularly’ after a specific number n, of cycles, and
the total number of measurements made is N, then

12

N
P=s=—npg—pg—— n t.;and (K-4)
2 3 Y i
B, =Ny
and
1 2
C = i 3 80 > g (niz-n )ti' (K-5)
n (N -N) @ -4, 2,

The principal reason for having the equation in this form is that C is a linear function

of the time measurements and will be useful in an error analysis. For illustration, a
specific case for N = 3 can be used; this is the least number of measurements that will
still determine C. The equations will resolve into

(K-6)




t.. (K-7)

The first equation is easily understood: the average period is simply the total time
(’c3 - tl) divided by the total number of cycles (2no).
3. Random Errors

The errors in the determination of P and C will now be obtained. It will be as-~
sumed, for the present, that errors in successive time measurements are uncor-
related, and the errors in each are equal. The quantities of interest are in the form:

C=f1t1+f21:2+f3t3+f4t4 +oue (K-8)

Where f1 is a weighting function.

The variance of C will then be
. o =f"o¢ +f "g" +f g +f "0 +... (K-9)

where oy is the standard deviation in the time measurement; this has been estimated
to be 8 microseconds for SERT. The indicated operations can be performed on equa-
tions (K-4) and (K-5), and the results are as follows:

G = ; (K-10)
} n Vv N2 1\/; .

g

g
N

© noz‘/N2 - 1'\/N2—4 f

Of perhaps more physical interest are the errors in the average angular frequency and
the angular acceleration, which are expressed as

()%

) ‘w TN\ /[, VN
N -1

(K-12)



and

g. =
w T2

(K-13)

2
125 ( N ) w oy
"/Nz—l ‘/N2-4 ‘/N
where T is the total time of measurement; that is, T = PNn,. Note that the expres-

sions in parentheses approach unity for large values of N, and need only be considered
for small samples.

For illustration, we shall calculate the error in angular acceleration for a time meas-
urement lasting 1 minute. If the period of revolution is 0.5 second, and if measure-
ments are made every ten cycles are made every ten cycles, the error is

30

12v'5 ( 13 ) (12.5 rad/sec) (20 usec) (K-14)

(60 sec)> W168 V165 v 13

0.53x 1070 rad/secz.

- 2
Since an angular acceleration of 280 x 10 6 rad/sec  is expected for the cesium-con-
tact-ion engine, this corresponds to an accuracy of two-tenths of one percent.

A plot of measurement accuracy as a function of time and frequency of measurement
is presented in Figure K-2 for a thrust rate of 400 x 10-6 rad/sec?.
4. Nutation Errors

Superimposed on the variations already discussed will be a sinusoidal variation

due to the nutation. The time measurements (t) as a function of the number of space-
craft rotations (n) will presumably be in the form:

t =a+Pn+en +b sinn@®P +dcosnpP. (K-15)
where the two constants, b and d, define the phase and amplitude of the nutation.

For a simplified body of revolution, ¢ is the angular frequency of nutation, and P is
the period of rotation so that

I erl
OP = F=wP = (K-16)
Xy Xy




f=2rps
30,220 u SEC

w= 400 x 10°® RAD/SEC?
(DUE TO ENGINE THRUSTING)

JIMING EVERY 10 CYCLES

TIMING EACH CYCLE

ACCURACY (PERCENT)

°

30,  12v5 ( N2
— A e——— N ——————

@ er?

o 10 20 30 40 50 60 70
MEASUREMENT TIME (SECONDS)

Figure K-2. Acceleration Measurement Accuracy

The simplest way of minimizing the error in a small number of cycles is to count such
a number that <pP1 isa multlple of 27. The error is thereby canceled The difficulty

To estimate this error, assume i cycles are counted each time, and

I
z

11
Xy

i = m +e¢, (K-17)

where m is an integer and ¢ is a small fractional residual. It then follows that

an +dcosn@P =Cn2 +dcos27n(m+€)~d+ (C 2172€2d) n2, (K-18)



where the expansion of the cosine is valid if our total measurements are over a small
enough range so that the sum of € does not build up to a full cycle. The fractional
error in ¢ is therefore

2
d2172<2 _ (400 pysec) 27 52

2
G @ gse0) ~ 2000¢, (K-19)

Error =

where C is obtained from equation (K-1) for an angular acceleration of 400 x 10-6 rad/
sec2. It therefore follows that for the error to be less than 1 percent, ¢ must be less
than 0.002; in other words, if the ratio of moment of inertias is approximately 1.3 and
we count ten cycles, then

Io

1.2998 < T1 < 1.3002. (K-20)
Xy

Another method that can be used, if the constraint of equation (K-20) is impractical, is
to actually determine the coefficient d. This cannot be done if € is very small, because
then it is difficult to distinguish curvature due to thrust from curvature due to nutation.
However, if we choose i in equation (K-17) so that € is close to one half, then we maxi-
mize the fluctuations due to nutations and can determine d. A least squares fit can
then be made to Equation (K-15). If we assume, as before, that measurements are made
at equal intervals (after i cycles every time) and that n = 0, then the odd functions are
uncoupled from the even functions and the least squares equations for the determina-
tion of C are

Zti = aN +c Y niz+d ZCosni(bP;

i i i
> nf ti =a » niz+C Y ni4 +d 2 ni2 cos niqu (K-21)
i i i i

. . 2 . .
z ti cos n, P =a Z cos ni oP +C z ni cos ni OP +d Z coszni(pP.
i i i i

These three equations can be solved for a, C, and d, and can be used regardless of the
value of ¢; however, it is important to choose a value of € that is not too close to zero,
or the error discussed previously will appear. By choosing a value of € close to one

- half, there is the advantage that, for preliminary analysis, we can add consecutive
periods, thereby eliminating most of the error, and for later analysis we still have
the information to determine d.




. Further analysis would be required for a quantitative determination of the errors, but |

it would appear that such a least-squares analysis would decrease the errors to where !
they are limited by the time measurements (and thereby comparable to the errors |
presented at the front of this appendix). The effect of the error in nutation frequency
could also be investigated.
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ABSTRACT

The purpose of the SERT program is to test, in the space
environment, the behavior of ion-beam neutralization in
ion engines. The engines, mounted on hinged arms at the
periphery of the circular baseplate, extend after Scout
fourth-stage separation and vary the spacecraft spin rate
during thrusting, thus providing a simple method of mea-
suring engine thrust. The electrical systems provide
conditioned power for engine operation and telemeter per-
formance data throughout the 1-hour ballistic flight. The
ground equipment was developed to test the spacecraft be-
fore launch as well as to monitor flight performance.
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